


Table	of	Contents

About	the	Tutorial
…………………………………………………………………………………………………………………………..
i
Audience………………………………………………………………………………………………………………………………………..
i
Prerequisites…………………………………………………………………………………………………………………………………..
i	Copyright	and	Disclaimer
…………………………………………………………………………………………………………………
i	Compile	&	Execute	Online
……………………………………………………………………………………………………………….
ii	Table	of	Contents
………………………………………………………………………………………………………………………….
iii

BASICS………………………………………………………………………………………………………………………..1

1.	Overview
………………………………………………………………………………………………………………………………..2
Characteristics	of	a	Data
Structure……………………………………………………………………………………………………
2
Need	for	Data	Structure
………………………………………………………………………………………………………………….
2
Execution	Time	Cases
……………………………………………………………………………………………………………………..
3
Basic	Terminology
………………………………………………………………………………………………………………………….
3

2.	Environment	Setup
…………………………………………………………………………………………………………………..4
Try	it	Option	Online
………………………………………………………………………………………………………………………..
4
Local	Environment
Setup…………………………………………………………………………………………………………………
4
Installation	on
UNIX/Linux……………………………………………………………………………………………………………….
5
Installation	on	Mac
OS…………………………………………………………………………………………………………………….



5
Installation	on
Windows………………………………………………………………………………………………………………….
6

ALGORITHM………………………………………………………………………………………………………………..7

3.	Algorithms	─	Basics
…………………………………………………………………………………………………………………..8
Characteristics	of	an	Algorithm
………………………………………………………………………………………………………..
8
How	to	Write	an	Algorithm?
……………………………………………………………………………………………………………
9
Algorithm
Analysis………………………………………………………………………………………………………………………..
10
Algorithm
Complexity……………………………………………………………………………………………………………………
11
Space	Complexity
…………………………………………………………………………………………………………………………
11
Time
Complexity…………………………………………………………………………………………………………………………..
11

4.	Asymptotic
Analysis………………………………………………………………………………………………………………..12
Asymptotic
Notations……………………………………………………………………………………………………………………
12
Common	Asymptotic	Notations
……………………………………………………………………………………………………..
15

5.	Greedy	Algorithms
………………………………………………………………………………………………………………….16
Counting
Coins……………………………………………………………………………………………………………………………..
16

6.	Divide	&
Conquer……………………………………………………………………………………………………………………
18
Divide/Break
………………………………………………………………………………………………………………………………..



18
Conquer/Solve……………………………………………………………………………………………………………………………..
18
Merge/Combine
…………………………………………………………………………………………………………………………..
19

7.	Dynamic
Programming…………………………………………………………………………………………………………….20
iii

DATA	STRUCTURES
…………………………………………………………………………………………………….21

8.	Basic	Concepts
……………………………………………………………………………………………………………………….22
Data	Definition
…………………………………………………………………………………………………………………………….
22
Data
Object………………………………………………………………………………………………………………………………….
22
Data
Type…………………………………………………………………………………………………………………………………….
22
Basic
Operations…………………………………………………………………………………………………………………………..
23

9.	Arrays
…………………………………………………………………………………………………………………………………..24
Array	Representation
……………………………………………………………………………………………………………………
24
Basic
Operations…………………………………………………………………………………………………………………………..
25
Insertion	Operation
………………………………………………………………………………………………………………………
25
Array	Insertions
……………………………………………………………………………………………………………………………
27
Insertion	at	the	Beginning	of	an	Array
…………………………………………………………………………………………….
28
Insertion	at	the	Given	Index	of	an	Array



………………………………………………………………………………………….	30
Insertion	After	the	Given	Index	of	an	Array
……………………………………………………………………………………..	32
Insertion	Before	the	Given	Index	of	an
Array……………………………………………………………………………………	34
Deletion
Operation……………………………………………………………………………………………………………………….
36
Search
Operation………………………………………………………………………………………………………………………….
37
Update
Operation…………………………………………………………………………………………………………………………
39

LINKED
LIST……………………………………………………………………………………………………………….41

10.	Linked	List	─
Basics………………………………………………………………………………………………………………….42
Linked	List	Representation
…………………………………………………………………………………………………………….
42
Types	of	Linked	List
………………………………………………………………………………………………………………………
42
Basic
Operations…………………………………………………………………………………………………………………………..
43
Insertion	Operation
………………………………………………………………………………………………………………………
43
Deletion
Operation……………………………………………………………………………………………………………………….
44
Reverse
Operation………………………………………………………………………………………………………………………..
45
Linked	List	Program	in	C
………………………………………………………………………………………………………………..
46

11.	Doubly	Linked	List
…………………………………………………………………………………………………………………..55
Doubly	Linked	List	Representation
………………………………………………………………………………………………….



55
Basic
Operations…………………………………………………………………………………………………………………………..
55
Insertion	Operation
………………………………………………………………………………………………………………………
56
Deletion
Operation……………………………………………………………………………………………………………………….
57
Insertion	at	the	End	of	an
Operation……………………………………………………………………………………………….
57
Doubly	Linked	List	Program	in	C
……………………………………………………………………………………………………..
58

12.	Circular	Linked	List
………………………………………………………………………………………………………………….67
Singly	Linked	List	as	Circular
…………………………………………………………………………………………………………..
67
Doubly	Linked	List	as	Circular
…………………………………………………………………………………………………………
67
Basic
Operations…………………………………………………………………………………………………………………………..
67
Insertion	Operation
………………………………………………………………………………………………………………………
68
Deletion
Operation……………………………………………………………………………………………………………………….
68
Display	List
Operation……………………………………………………………………………………………………………………
69
Circular	Linked	List	Program	in	C
…………………………………………………………………………………………………….
69

STACK	&
QUEUE…………………………………………………………………………………………………………
74

13.	Stack



…………………………………………………………………………………………………………………………………….75
Stack
Representation…………………………………………………………………………………………………………………….
75
Basic
Operations…………………………………………………………………………………………………………………………..
76
peek()
………………………………………………………………………………………………………………………………………….
76
isfull()
………………………………………………………………………………………………………………………………………….
77
isempty()
……………………………………………………………………………………………………………………………………..
77
Push
Operation…………………………………………………………………………………………………………………………….
78
Pop	Operation
……………………………………………………………………………………………………………………………..
79
Stack	Program	in
C………………………………………………………………………………………………………………………..
81

14.	Expression	Parsing
………………………………………………………………………………………………………………….84
Infix
Notation……………………………………………………………………………………………………………………………….
84
Prefix	Notation
…………………………………………………………………………………………………………………………….
84
Postfix
Notation……………………………………………………………………………………………………………………………
84
Parsing	Expressions
………………………………………………………………………………………………………………………
85
Postfix	Evaluation	Algorithm
………………………………………………………………………………………………………….
86
Expression	Parsing	Using
Stack……………………………………………………………………………………………………….
86



15.	Queue
…………………………………………………………………………………………………………………………………..92
Queue	Representation
………………………………………………………………………………………………………………….
92
Basic
Operations…………………………………………………………………………………………………………………………..
92
peek()
………………………………………………………………………………………………………………………………………….
93
isfull()
………………………………………………………………………………………………………………………………………….
93
isempty()
……………………………………………………………………………………………………………………………………..
94
Enqueue	Operation
………………………………………………………………………………………………………………………
95
Dequeue	Operation
………………………………………………………………………………………………………………………
96
Queue	Program	in	C
……………………………………………………………………………………………………………………..
98

SEARCHING
TECHNIQUES…………………………………………………………………………………………..102

16.	Linear	Search
……………………………………………………………………………………………………………………….103
Linear	Search	Program	in	C
………………………………………………………………………………………………………….
104

17.	Binary	Search
……………………………………………………………………………………………………………………….107
How	Binary	Search	Works?
………………………………………………………………………………………………………….
107
Binary	Search	Program	in	C
………………………………………………………………………………………………………….
110

18.	Interpolation	Search
……………………………………………………………………………………………………………..113



Positioning	in	Binary	Search
…………………………………………………………………………………………………………
113
Position	Probing	in	Interpolation
Search………………………………………………………………………………………..
114
Interpolation	Search	Program	in	C
………………………………………………………………………………………………..
116

19.	Hash	Table
…………………………………………………………………………………………………………………………..118
Hashing
……………………………………………………………………………………………………………………………………..
118
Linear
Probing…………………………………………………………………………………………………………………………….
119
Basic
Operations…………………………………………………………………………………………………………………………
120
Data
Item…………………………………………………………………………………………………………………………………..
120

v	Hash	Method
……………………………………………………………………………………………………………………………..
120
Search
Operation………………………………………………………………………………………………………………………..
120
Insert	Operation
…………………………………………………………………………………………………………………………
121
Delete	Operation
………………………………………………………………………………………………………………………..
122
Hash	Table	Program	in	C
……………………………………………………………………………………………………………..
123

SORTING
TECHNIQUES………………………………………………………………………………………………
128

20.	Sorting
Algorithm………………………………………………………………………………………………………………….129



In-place	Sorting	and	Not-in-place	Sorting
………………………………………………………………………………………	129
Stable	and	Not	Stable
Sorting……………………………………………………………………………………………………….
129
Adaptive	and	Non-Adaptive	Sorting	Algorithm
……………………………………………………………………………….	130
Important
Terms…………………………………………………………………………………………………………………………
130

21.	Bubble	Sort	Algorithm
…………………………………………………………………………………………………………..132
How	Bubble	Sort	Works?
……………………………………………………………………………………………………………..
132
Bubble	Sort	Program	in	C
…………………………………………………………………………………………………………….
136

22.	Insertion	Sort
……………………………………………………………………………………………………………………….140
How	Insertion	Sort	Works?
………………………………………………………………………………………………………….
140
Insertion	Sort	Program	in	C
………………………………………………………………………………………………………….
143

23.	Selection
Sort……………………………………………………………………………………………………………………….147
How	Selection	Sort	Works?
………………………………………………………………………………………………………….
147
Selection	Sort	Program	in	C
………………………………………………………………………………………………………….
150

24.	Merge	Sort	Algorithm
……………………………………………………………………………………………………………
153
How	Merge	Sort	Works?
……………………………………………………………………………………………………………..
153
Merge	Sort	Program	in	C
……………………………………………………………………………………………………………..
156

25.	Shell	Sort



…………………………………………………………………………………………………………………………….158
How	Shell	Sort	Works?
………………………………………………………………………………………………………………..
158
Shell	Sort	Program	in	C
………………………………………………………………………………………………………………..
162

26.	Quick	Sort
……………………………………………………………………………………………………………………………
166
Partition	in	Quick	Sort
…………………………………………………………………………………………………………………
166
Quick	Sort	Pivot	Algorithm
…………………………………………………………………………………………………………..
166
Quick	Sort	Pivot	Pseudocode
……………………………………………………………………………………………………….
167
Quick	Sort	Algorithm
…………………………………………………………………………………………………………………..
167
Quick	Sort
Pseudocode………………………………………………………………………………………………………………..
168
Quick	Sort	Program	in	C
………………………………………………………………………………………………………………
168

GRAPH	DATA	STRUCTURE
………………………………………………………………………………………….172

27.	Graphs
………………………………………………………………………………………………………………………………..173
Graph	Data	Structure
………………………………………………………………………………………………………………….
173
Basic
Operations…………………………………………………………………………………………………………………………
175

28.	Depth	First
Traversal……………………………………………………………………………………………………………..176
Depth	First	Traversal	in	C
…………………………………………………………………………………………………………….
179



29.	Breadth	First
Traversal…………………………………………………………………………………………………………..184
Breadth	First	Traversal	in	C
………………………………………………………………………………………………………….
186

TREE	DATA	STRUCTURE
…………………………………………………………………………………………….192

30.	Tree
……………………………………………………………………………………………………………………………………
193
Important
Terms…………………………………………………………………………………………………………………………
193
Binary	Search	Tree	Representation
……………………………………………………………………………………………….
194
Tree	Node
………………………………………………………………………………………………………………………………….
194
BST	Basic	Operations
…………………………………………………………………………………………………………………..
195
Insert	Operation
…………………………………………………………………………………………………………………………
195
Search
Operation………………………………………………………………………………………………………………………..
197
Tree	Traversal	in	C
………………………………………………………………………………………………………………………
198

31.	Tree	Traversal
………………………………………………………………………………………………………………………
204
In-order	Traversal
……………………………………………………………………………………………………………………….
204
Pre-order
Traversal……………………………………………………………………………………………………………………..
205
Post-order	Traversal
……………………………………………………………………………………………………………………
206



Tree	Traversal	in	C
………………………………………………………………………………………………………………………
207

32.	Binary	Search	Tree
………………………………………………………………………………………………………………..213
Representation
…………………………………………………………………………………………………………………………..
213
Basic
Operations…………………………………………………………………………………………………………………………
214
Node
…………………………………………………………………………………………………………………………………………
214
Search
Operation………………………………………………………………………………………………………………………..
214
Insert	Operation
…………………………………………………………………………………………………………………………
215

33.	AVL	Trees
…………………………………………………………………………………………………………………………….217
AVL	Rotations
…………………………………………………………………………………………………………………………….
218

34.	Spanning	Tree
………………………………………………………………………………………………………………………
222
General	Properties	of	Spanning	Tree
…………………………………………………………………………………………….
222
Mathematical	Properties	of	Spanning
Tree…………………………………………………………………………………….	223
Application	of	Spanning	Tree
……………………………………………………………………………………………………….
223
Minimum	Spanning	Tree	(MST)
…………………………………………………………………………………………………….
223
Minimum	Spanning-Tree	Algorithm
………………………………………………………………………………………………
223
Kruskal’s	Spanning	Tree
Algorithm………………………………………………………………………………………………..
224



Prim’s	Spanning	Tree	Algorithm
……………………………………………………………………………………………………
227

35.
Heaps………………………………………………………………………………………………………………………………….231
Max	Heap	Construction	Algorithm
………………………………………………………………………………………………..
232
Max	Heap	Deletion	Algorithm
………………………………………………………………………………………………………
233

RECURSION……………………………………………………………………………………………………………..234

vii

36.	Recursion	─
Basics…………………………………………………………………………………………………………………
235
Properties
………………………………………………………………………………………………………………………………….
235
Implementation………………………………………………………………………………………………………………………….
236
Analysis	of
Recursion…………………………………………………………………………………………………………………..
236
Time
Complexity…………………………………………………………………………………………………………………………
236
Space	Complexity
……………………………………………………………………………………………………………………….
237

37.	Tower	of	Hanoi
…………………………………………………………………………………………………………………….238
Rules
…………………………………………………………………………………………………………………………………………
238
Algorithm…………………………………………………………………………………………………………………………………..
242
Tower	of	Hanoi	in	C
…………………………………………………………………………………………………………………….
245

38.	Fibonacci	Series
……………………………………………………………………………………………………………………



249
Fibonacci	Iterative	Algorithm
……………………………………………………………………………………………………….
250
Fibonacci	Interactive	Program	in
C………………………………………………………………………………………………..
250
Fibonacci	Recursive	Algorithm
……………………………………………………………………………………………………..
252
Fibonacci	Recursive	Program	in
C………………………………………………………………………………………………….
252

viii



Basics
1.	Overview	Data	Structures	&
Algorithms
Data	Structure	is	a	systematic	way	to	organize	data	in	order	to	use	it	efficiently.	Following
terms	are	the	foundation	terms	of	a	data	structure.

Interface	−	Each	data	structure	has	an	interface.	Interface	represents	the	set	of	operations
that	a	data	structure	supports.	An	interface	only	provides	the	list	of	supported	operations,
type	of	parameters	they	can	accept	and	return	type	of	these	operations.

Implementation	−	Implementation	provides	the	internal	representation	of	a	data	structure.
Implementation	also	provides	the	definition	of	the	algorithms	used	in	the	operations	of	the
data	structure.



Characteristics	ofa	Data	Structure

Correctness	−	Data	structure	implementation	should	implement	its	interface	correctly.
Time	Complexity	−	Running	time	or	the	execution	time	of	operations	of	data	structure
must	be	as	small	as	possible.
Space	Complexity	−	Memory	usage	of	a	data	structure	operation	should	be	as	little	as
possible.



Need	for	Data	Structure

As	applications	are	getting	complex	and	data	rich,	there	are	three	common	problems	that
applications	face	now-a-days.

Data	Search	−	Consider	an	inventory	of	1	million(106)	items	of	a	store.	If	the	application
is	to	search	an	item,	it	has	to	search	an	item	in	1	million(106)	items	every	time	slowing
down	the	search.	As	data	grows,	search	will	become	slower.

Processor	Speed	−	Processor	speed	although	being	very	high,	falls	limited	if	the	data
grows	to	billion	records.
Multiple	Requests	−	As	thousands	of	users	can	search	data	simultaneously	on	a	web
server,	even	the	fast	server	fails	while	searching	the	data.

To	solve	the	above-mentioned	problems,	data	structures	come	to	rescue.	Data	can	be
organized	in	a	data	structure	in	such	a	way	that	all	items	may	not	be	required	to	be
searched,	and	the	required	data	can	be	searched	almost	instantly.



ExecutionTimeCases

There	are	three	cases	which	are	usually	used	to	compare	various	data	structure’s	execution
time	in	a	relative	manner.

Worst	Case	−	This	is	the	scenario	where	a	particular	data	structure	operation	takes
maximum	time	it	can	take.	If	an	operation’s	worst	case	time	is	ƒ(n)	then	this	operation	will
not	take	more	than	ƒ(n)	time,	where	ƒ(n)	represents	function	of	n.

Average	Case	−	This	is	the	scenario	depicting	the	average	execution	time	of	an	operation
of	a	data	structure.	If	an	operation	takes	ƒ(n)	time	in	execution,	then	m	operations	will
take	mƒ(n)	time.

Best	Case	−	This	is	the	scenario	depicting	the	least	possible	execution	time	of	an
operation	of	a	data	structure.	If	an	operation	takes	ƒ(n)	time	in	execution,	then	the	actual
operation	may	take	time	as	the	random	number	which	would	be	maximum	as	ƒ(n).



Basic	Terminology

Data	−	Data	are	values	or	set	of	values.
Data	Item	−	Data	item	refers	to	single	unit	of	values.
Group	Items	−	Data	items	that	are	divided	into	sub	items	are	called	as	Group	Items.
Elementary	Items	−	Data	items	that	cannot	be	divided	are	called	as	Elementary	Items.
Attribute	and	Entity	−	An	entity	is	that	which	contains	certain	attributes	or	properties,
which	may	be	assigned	values.
Entity	Set	−	Entities	of	similar	attributes	form	an	entity	set.
Field	−	Field	is	a	single	elementary	unit	of	information	representing	an	attribute	of	an
entity.
Record	−	Record	is	a	collection	of	field	values	of	a	given	entity.	File	−	File	is	a	collection
of	records	of	the	entities	in	a	given	entity	set.



2.	Environment	SetupData	Structures	&
Algorithms



Tryit	Option	Online

You	really	do	not	need	to	set	up	your	own	environment	to	start	learning	C	programming
language.	Reason	is	very	simple,	we	already	have	set	up	C	Programming	environment
online,	so	that	you	can	compile	and	execute	all	the	available	examples	online	at	the	same
time	when	you	are	doing	your	theory	work.	This	gives	you	confidence	in	what	you	are
reading	and	to	check	the	result	with	different	options.	Feel	free	to	modify	any	example	and
execute	it	online.

Try	the	following	example	using	the	Try	it	option	available	at	the	top	right	corner	of	the
sample	code	box	−
#include	<stdio.h>

int	main(){
/*	My	first	program	in	C	*/	printf(“Hello,	World!	\n”);

return	0;	}
For	most	of	the	examples	given	in	this	tutorial,	you	will	find	Try	it	option,	so	just	make
use	of	it	and	enjoy	your	learning.



LocalEnvironment	Setup

If	you	are	still	willing	to	set	up	your	environment	for	C	programming	language,	you	need
the	following	two	tools	available	on	your	computer,	(a)	Text	Editor	and	(b)	The	C
Compiler.

Text	Editor

This	will	be	used	to	type	your	program.	Examples	of	few	editors	include	Windows
Notepad,	OS	Edit	command,	Brief,	Epsilon,	EMACS,	and	vim	or	vi.

The	name	and	the	version	of	the	text	editor	can	vary	on	different	operating	systems.	For
example,	Notepad	will	be	used	on	Windows,	and	vim	or	vi	can	be	used	on	Windows	as
well	as	Linux	or	UNIX.

The	files	you	create	with	your	editor	are	called	source	files	and	contain	program	source
code.	The	source	files	for	C	programs	are	typically	named	with	the	extension	“.c“.

Before	starting	your	programming,	make	sure	you	have	one	text	editor	in	place	and	you
have	enough	experience	to	write	a	computer	program,	save	it	in	a	file,	compile	it,	and
finally	execute	it.

The	C	Compiler

The	source	code	written	in	the	source	file	is	the	human	readable	source	for	your	program.
It	needs	to	be	“compiled”,	to	turn	into	machine	language	so	that	your	CPU	can	actually
execute	the	program	as	per	the	given	instructions.

This	C	programming	language	compiler	will	be	used	to	compile	your	source	code	into	a
final	executable	program.	We	assume	you	have	the	basic	knowledge	about	a	programming
language	compiler.

Most	frequently	used	and	free	available	compiler	is	GNU	C/C++	compiler.	Otherwise,	you
can	have	compilers	either	from	HP	or	Solaris	if	you	have	respective	Operating	Systems
(OS).

The	following	section	guides	you	on	how	to	install	GNU	C/C++	compiler	on	various	OS.
We	are	mentioning	C/C++	together	because	GNU	GCC	compiler	works	for	both	C	and
C++	programming	languages.



Installation	on	UNIX/Linux

If	you	are	using	Linux	or	UNIX,	then	check	whether	GCC	is	installed	on	your	system	by
entering	the	following	command	from	the	command	line	−
$	gcc	-v
If	you	have	GNU	compiler	installed	on	your	machine,	then	it	should	print	a	message	such
as	the	following	−

Using	built-in	specs.
Target:	i386-redhat-linux
Configured	with:	../configure	—prefix=/usr	…….	Thread	model:	posix
gcc	version	4.1.2	20080704	(Red	Hat	4.1.2-46)

If	GCC	is	not	installed,	then	you	will	have	to	install	it	yourself	using	the	detailed
instructions	available	at	http://gcc.gnu.org/install/
This	tutorial	has	been	written	based	on	Linux	and	all	the	given	examples	have	been
compiled	on	Cent	OS	flavor	of	Linux	system.



Installation	on	Mac	OS

If	you	use	Mac	OS	X,	the	easiest	way	to	obtain	GCC	is	to	download	the	Xcode
development	environment	from	Apple’s	website	and	follow	the	simple	installation
instructions.	Once	you	have	Xcode	setup,	you	will	be	able	to	use	GNU	compiler	for
C/C++.

Xcode	is	currently	available	at	developer.apple.com/technologies/tools/



Installation	onWindows

To	install	GCC	on	Windows,	you	need	to	install	MinGW.	To	install	MinGW,	go	to	the
MinGW	homepage,	www.mingw.org,	and	follow	the	link	to	the	MinGW	download	page.
Download	the	latest	version	of	the	MinGW	installation	program,	which	should	be	named
MinGW<version>.exe.

While	installing	MinWG,	at	a	minimum,	you	must	install	gcc-core,	gcc-g++,	binutils,	and
the	MinGW	runtime,	but	you	may	wish	to	install	more.
Add	the	bin	subdirectory	of	your	MinGW	installation	to	your	PATH	environment
variable,	so	that	you	can	specify	these	tools	on	the	command	line	by	their	simple	names.
When	the	installation	is	complete,	you	will	be	able	to	run	gcc,	g++,	ar,	ranlib,	dlltool,	and
several	other	GNU	tools	from	the	Windows	command	line.



Algorithm
3.	Algorithms─	BasicsData	Structures	&
Algorithms
Algorithm	is	a	step-by-step	procedure,	which	defines	a	set	of	instructions	to	be	executed	in
a	certain	order	to	get	the	desired	output.	Algorithms	are	generally	created	independent	of
underlying	languages,	i.e.	an	algorithm	can	be	implemented	in	more	than	one
programming	language.

From	the	data	structure	point	of	view,	following	are	some	important	categories	of
algorithms	−
Search	−	Algorithm	to	search	an	item	in	a	data	structure.
Sort	−	Algorithm	to	sort	items	in	a	certain	order.
Insert	−	Algorithm	to	insert	item	in	a	data	structure.
Update	−	Algorithm	to	update	an	existing	item	in	a	data	structure.	Delete	−	Algorithm	to
delete	an	existing	item	from	a	data	structure.



Characteristics	ofanAlgorithm

Not	all	procedures	can	be	called	an	algorithm.	An	algorithm	should	have	the	following
characteristics	−

Unambiguous	−	Algorithm	should	be	clear	and	unambiguous.	Each	of	its	steps	(or
phases),	and	their	inputs/outputs	should	be	clear	and	must	lead	to	only	one	meaning.

Input	−	An	algorithm	should	have	0	or	more	well-defined	inputs.
Output	−	An	algorithm	should	have	1	or	more	well-defined	outputs,	and	should	match	the
desired	output.
Finiteness	−	Algorithms	must	terminate	after	a	finite	number	of	steps.
Feasibility	−	Should	be	feasible	with	the	available	resources.
Independent	−	An	algorithm	should	have	step-by-step	directions,	which	should	be
independent	of	any	programming	code.



How	toWriteanAlgorithm?

There	are	no	well-defined	standards	for	writing	algorithms.	Rather,	it	is	problem	and
resource	dependent.	Algorithms	are	never	written	to	support	a	particular	programming
code.

As	we	know	that	all	programming	languages	share	basic	code	constructs	like	loops	(do,
for,	while),	flow-control	(if-else),	etc.	These	common	constructs	can	be	used	to	write	an
algorithm.

We	write	algorithms	in	a	step-by-step	manner,	but	it	is	not	always	the	case.	Algorithm
writing	is	a	process	and	is	executed	after	the	problem	domain	is	well-defined.	That	is,	we
should	know	the	problem	domain,	for	which	we	are	designing	a	solution.

Example

Let’s	try	to	learn	algorithm-writing	by	using	an	example.
Problem	−	Design	an	algorithm	to	add	two	numbers	and	display	the	result.

step	1	−	START
step	2	−	declare	three	integers	a,	b	&	c
step	3	−	define	values	of	a	&	b
step	4	−	add	values	of	a	&	b
step	5	−	store	output	of	step	4	to	c
step	6	−	print	c
step	7	−	STOP

Algorithms	tell	the	programmers	how	to	code	the	program.	Alternatively,	the	algorithm
can	be	written	as	−

step	1	−	START	ADD
step	2	−	get	values	of	a	&	b
step	3	−	c	←	a	+	b
step	4	−	display	c
step	5	−	STOP

In	design	and	analysis	of	algorithms,	usually	the	second	method	is	used	to	describe	an
algorithm.	It	makes	it	easy	for	the	analyst	to	analyze	the	algorithm	ignoring	all	unwanted
definitions.	He	can	observe	what	operations	are	being	used	and	how	the	process	is
flowing.

Writing	step	numbers,	is	optional.

We	design	an	algorithm	to	get	a	solution	of	a	given	problem.	A	problem	can	be	solved	in
more	than	one	ways.



Hence,	many	solution	algorithms	can	be	derived	for	a	given	problem.	The	next	step	is	to
analyze	those	proposed	solution	algorithms	and	implement	the	best	suitable	solution.



AlgorithmAnalysis

Efficiency	of	an	algorithm	can	be	analyzed	at	two	different	stages,	before	implementation
and	after	implementation.	They	are	the	following	−

A	Priori	Analysis	−	This	is	a	theoretical	analysis	of	an	algorithm.	Efficiency	of	an
algorithm	is	measured	by	assuming	that	all	other	factors,	for	example,	processor	speed,	are
constant	and	have	no	effect	on	the	implementation.

A	Posterior	Analysis	−	This	is	an	empirical	analysis	of	an	algorithm.	The	selected
algorithm	is	implemented	using	programming	language.	This	is	then	executed	on	target
computer	machine.	In	this	analysis,	actual	statistics	like	running	time	and	space	required,
are	collected.

We	shall	learn	about	a	priori	algorithm	analysis.	Algorithm	analysis	deals	with	the
execution	or	running	time	of	various	operations	involved.	The	running	time	of	an
operation	can	be	defined	as	the	number	of	computer	instructions	executed	per	operation.



AlgorithmComplexity

Suppose	X	is	an	algorithm	and	n	is	the	size	of	input	data,	the	time	and	space	used	by	the
algorithm	X	are	the	two	main	factors,	which	decide	the	efficiency	of	X.
Time	Factor	–	Time	is	measured	by	counting	the	number	of	key	operations	such	as
comparisons	in	the	sorting	algorithm.
Space	Factor	−	Space	is	measured	by	counting	the	maximum	memory	space	required	by
the	algorithm.
The	complexity	of	an	algorithm	f(n)	gives	the	running	time	and/or	the	storage	space
required	by	the	algorithm	in	terms	of	n	as	the	size	of	input	data.



SpaceComplexity

Space	complexity	of	an	algorithm	represents	the	amount	of	memory	space	required	by	the
algorithm	in	its	life	cycle.	The	space	required	by	an	algorithm	is	equal	to	the	sum	of	the
following	two	components	−

A	fixed	part	that	is	a	space	required	to	store	certain	data	and	variables,	that	are
independent	of	the	size	of	the	problem.	For	example,	simple	variables	and	constants	used,
program	size,	etc.

A	variable	part	is	a	space	required	by	variables,	whose	size	depends	on	the	size	of	the
problem.	For	example,	dynamic	memory	allocation,	recursion	stack	space,	etc.

Space	complexity	S(P)	of	any	algorithm	P	is	S(P)	=	C	+	SP(I)	 	where	C	is	the	fixed	part
and	S(I)	is	the	variable	part	of	the	algorithm,	which	depends	on	instance	characteristic	I.
Following	is	a	simple	example	that	tries	to	explain	the	concept	−

Algorithm:	SUM(A,	B)	Step	1	START
Step	2	C	←	A	+	B	+	10	Step	3	Stop

Here	we	have	three	variables	A,	B,	and	C	and	one	constant.	Hence	S(P)	=	1+3.	Now,
space	depends	on	data	types	of	given	variables	and	constant	types	and	it	will	be	multiplied
accordingly.



TimeComplexity

Time	complexity	of	an	algorithm	represents	the	amount	of	time	required	by	the	algorithm
to	run	to	completion.	Time	requirements	can	be	defined	as	a	numerical	function	T(n),
where	T(n)	can	be	measured	as	the	number	of	steps,	provided	each	step	consumes	constant
time.

For	example,	addition	of	two	n-bit	integers	takes	n	steps.	Consequently,	the	total
computational	time	is	T(n)	=	c*n,	where	c	is	the	time	taken	for	the	addition	of	two	bits.
Here,	we	observe	that	T(n)	grows	linearly	as	the	input	size	increases.



4.	Asymptotic	AnalysisData	Structures	&
Algorithms
Asymptotic	analysis	of	an	algorithm	refers	to	defining	the	mathematical
boundation/framing	of	its	run-time	performance.	Using	asymptotic	analysis,	we	can	very
well	conclude	the	best	case,	average	case,	and	worst	case	scenario	of	an	algorithm.
Asymptotic	analysis	is	input	bound	i.e.,	if	there’s	no	input	to	the	algorithm,	it	is	concluded
to	work	in	a	constant	time.	Other	than	the	“input”	all	other	factors	are	considered	constant.

Asymptotic	analysis	refers	to	computing	the	running	time	of	any	operation	in
mathematical	units	of	computation.	For	example,	the	running	time	of	one	operation	is
computed	as	f(n)	and	may	be	for	another	operation	it	is	computed	as	g(n2).	This	means	the
first	operation	running	time	will	increase	linearly	with	the	increase	in	n	and	the	running
time	of	the	second	operation	will	increase	exponentially	when	n	increases.	Similarly,	the
running	time	of	both	operations	will	be	nearly	the	same	if	n	is	significantly	small.

Usually,	the	time	required	by	an	algorithm	falls	under	three	types	−
Best	Case	−	Minimum	time	required	for	program	execution.
Average	Case	−	Average	time	required	for	program	execution.	Worst	Case	−	Maximum
time	required	for	program	execution.



AsymptoticNotations

Following	are	the	commonly	used	asymptotic	notations	to	calculate	the	running	time
complexity	of	an	algorithm.
Ο	Notation
Ω	Notation	θ	Notation

Big	Oh	Notation,	Ο

The	notation	Ο(n)	is	the	formal	way	to	express	the	upper	bound	of	an	algorithm’s	running
time.	It	measures	the	worst	case	time	complexity	or	the	longest	amount	of	time	an
algorithm	can	possibly	take	to	complete.

For	example,	for	a	function	f(n)

Ο(f(n))	=	{	g(n)	:	there	exists	c	>	0	and	n0	such	that	g(n)	≤	c.f(n)	for	all	n	>	n0.	}

Omega	Notation,	Ω

The	notation	Ω(n)	is	the	formal	way	to	express	the	lower	bound	of	an	algorithm’s	running
time.	It	measures	the	best	case	time	complexity	or	the	best	amount	of	time	an	algorithm
can	possibly	take	to	complete.

For	example,	for	a	function	f(n)

Ω(f(n))	≥	{	g(n)	:	there	exists	c	>	0	and	n0	such	that	g(n)	≤	c.f(n)	for	all	n	>	n0.	}

Theta	Notation,	θ



The	notation	θ(n)	is	the	formal	way	to	express	both	the	lower	bound	and	the	upper	bound
of	an	algorithm’s	running	time.	It	is	represented	as	follows	−

θ(f(n))	=	{	g(n)	if	and	only	if	g(n)	=	Ο(f(n))	and	g(n)
=	Ω(f(n))	for	all	n	>	n0.	}



CommonAsymptotic	Notations

Following	is	a	list	of	some	common	asymptotic	notations:
constant	−	Ο(1)
logarithmic	−	Ο(log	n)
linear	−	Ο(n)
n	log	n	−	Ο(n	log	n)
quadratic	−	Ο(n2)
cubic	−	Ο(n3)
polynomial	−	nΟ(1)	exponential	−	2Ο(n)



5.	Greedy	AlgorithmsData	Structures	&
Algorithms
An	algorithm	is	designed	to	achieve	optimum	solution	for	a	given	problem.	In	greedy
algorithm	approach,	decisions	are	made	from	the	given	solution	domain.	As	being	greedy,
the	closest	solution	that	seems	to	provide	an	optimum	solution	is	chosen.

Greedy	algorithms	try	to	find	a	localized	optimum	solution,	which	may	eventually	lead	to
globally	optimized	solutions.	However,	generally	greedy	algorithms	do	not	provide
globally	optimized	solutions.



Counting	Coins

This	problem	is	to	count	to	a	desired	value	by	choosing	the	least	possible	coins	and	the
greedy	approach	forces	the	algorithm	to	pick	the	largest	possible	coin.	If	we	are	provided
coins	of	€	1,	2,	5	and	10	and	we	are	asked	to	count	€	18	then	the	greedy	procedure	will	be
−

1	−	Select	one	€	10	coin,	the	remaining	count	is	8
2	−	Then	select	one	€	5	coin,	the	remaining	count	is	3
3	−	Then	select	one	€	2	coin,	the	remaining	count	is	1
3	−	And	finally,	the	selection	of	one	€	1	coins	solves	the	problem

Though,	it	seems	to	be	working	fine,	for	this	count	we	need	to	pick	only	4	coins.	But	if	we
slightly	change	the	problem	then	the	same	approach	may	not	be	able	to	produce	the	same
optimum	result.

For	the	currency	system,	where	we	have	coins	of	1,	7,	10	value,	counting	coins	for	value
18	will	be	absolutely	optimum	but	for	count	like	15,	it	may	use	more	coins	than	necessary.
For	example,	the	greedy	approach	will	use	10	+	1	+	1	+	1	+	1	+	1,	total	6	coins.	Whereas
the	same	problem	could	be	solved	by	using	only	3	coins	(7	+	7	+	1)

Hence,	we	may	conclude	that	the	greedy	approach	picks	an	immediate	optimized	solution
and	may	fail	where	global	optimization	is	a	major	concern.

Examples

Most	networking	algorithms	use	the	greedy	approach.	Here	is	a	list	of	few	of	them	−
Travelling	Salesman	Problem
Prim’s	Minimal	Spanning	Tree	Algorithm
Kruskal’s	Minimal	Spanning	Tree	Algorithm
Dijkstra’s	Minimal	Spanning	Tree	Algorithm
Graph	-	Map	Coloring
Graph	-	Vertex	Cover
Knapsack	Problem
Job	Scheduling	Problem
There	are	lots	of	similar	problems	that	uses	the	greedy	approach	to	find	an	optimum
solution.



6.	Divide	&	ConquerData	Structures	&
Algorithms
In	divide	and	conquer	approach,	the	problem	in	hand,	is	divided	into	smaller	sub-problems
and	then	each	problem	is	solved	independently.	When	we	keep	on	dividing	the
subproblems	into	even	smaller	sub-problems,	we	may	eventually	reach	a	stage	where	no
more	division	is	possible.	Those	“atomic”	smallest	possible	sub-problem	(fractions)	are
solved.	The	solution	of	all	sub-problems	is	finally	merged	in	order	to	obtain	the	solution
of	an	original	problem.

Broadly,	we	can
understand	divide-and-conquer	approach	in	a	three-step	process.



Divide/Break

This	step	involves	breaking	the	problem	into	smaller	sub-problems.	Sub-problems	should
represent	a	part	of	the	original	problem.	This	step	generally	takes	a	recursive	approach	to
divide	the	problem	until	no	sub-problem	is	further	divisible.	At	this	stage,	sub-problems
become	atomic	in	nature	but	still	represent	some	part	of	the	actual	problem.



Conquer/Solve

This	step	receives	a	lot	of	smaller	sub-problems	to	be	solved.	Generally,	at	this	level,	the
problems	are	considered	‘solved’	on	their	own.



Merge/Combine

When	the	smaller	sub-problems	are	solved,	this	stage	recursively	combines	them	until
they	formulate	a	solution	of	the	original	problem.	This	algorithmic	approach	works
recursively	and	conquer	&	merge	steps	works	so	close	that	they	appear	as	one.

Examples

The	following	computer	algorithms	are	based	on	divide-and-conquer	programming
approach	−
Merge	Sort
Quick	Sort
Binary	Search
Strassen’s	Matrix	Multiplication
Closest	Pair	(points)
There	are	various	ways	available	to	solve	any	computer	problem,	but	the	mentioned	are	a
good	example	of	divide	and	conquer	approach.



7.	Dynamic	ProgrammingData	Structures
&	Algorithms
Dynamic	programming	approach	is	similar	to	divide	and	conquer	in	breaking	down	the
problem	into	smaller	and	yet	smaller	possible	sub-problems.	But	unlike,	divide	and
conquer,	these	sub-problems	are	not	solved	independently.	Rather,	results	of	these	smaller
sub-problems	are	remembered	and	used	for	similar	or	overlapping	sub-problems.

Dynamic	programming	is	used	where	we	have	problems,	which	can	be	divided	into
similar	sub-problems,	so	that	their	results	can	be	re-used.	Mostly,	these	algorithms	are
used	for	optimization.	Before	solving	the	in-hand	sub-problem,	dynamic	algorithm	will	try
to	examine	the	results	of	the	previously	solved	sub-problems.	The	solutions	of	sub-
problems	are	combined	in	order	to	achieve	the	best	solution.

So	we	can	say	−
The	problem	should	be	able	to	be	divided	into	smaller	overlapping	sub-problem.
An	optimum	solution	can	be	achieved	by	using	an	optimum	solution	of	smaller
subproblems.
Dynamic	algorithms	use	memorization.

Comparison

In	contrast	to	algorithms	are	motivated	for	an	overall	optimization	of	the	problem.	greedy
algorithms,	where	local	optimization	is	addressed,	dynamic

In	contrast	to	divide	and	conquer	algorithms,	where	solutions	are	combined	to	achieve	an
overall	solution,	dynamic	algorithms	use	the	output	of	a	smaller	sub-problem	and	then	try
to	optimize	a	bigger	sub-problem.	Dynamic	algorithms	use	memorization	to	remember	the
output	of	already	solved	sub-problems.

Example

The	following	computer	problems	can	be	solved	using	dynamic	programming	approach	−
Fibonacci	number	series
Knapsack	problem
Tower	of	Hanoi
All	pair	shortest	path	by	Floyd-Warshall
Shortest	path	by	Dijkstra
Project	scheduling

Dynamic	programming	can	be	used	in	both	top-down	and	bottom-up	manner.	And	of
course,	most	of	the	times,	referring	to	the	previous	solution	output	is	cheaper	than
recomputing	in	terms	of	CPU	cycles.



Data	Structures
8.	Basic	ConceptsData	Structures	&
Algorithms
This	chapter	explains	the	basic	terms	related	to	data	structure.



Data	Definition

Data	Definition	defines	a	particular	data	with	the	following	characteristics.	Atomic	−
Definition	should	define	a	single	concept.
Traceable	−	Definition	should	be	able	to	be	mapped	to	some	data	element.
Accurate	−	Definition	should	be	unambiguous.	Clear	and	Concise	−	Definition	should
be	understandable.



Data	Object

Data	Object	represents	an	object	having	a	data.



Data	Type

Data	type	is	a	way	to	classify	various	types	of	data	such	as	integer,	string,	etc.	which
determines	the	values	that	can	be	used	with	the	corresponding	type	of	data,	the	type	of
operations	that	can	be	performed	on	the	corresponding	type	of	data.	There	are	two	data
types	−

Built-in	Data	Type	Derived	Data	Type

Built-in	Data	Type

Those	data	types	for	which	a	language	has	built-in	support	are	known	as	Built-in	Data
types.	For	example,	most	of	the	languages	provide	the	following	built-in	data	types.
Integers
Boolean	(true,	false)
Floating	(Decimal	numbers)	Character	and	Strings

Derived	Data	Type

Those	data	types	which	are	implementation	independent	as	they	can	be	implemented	in
one	or	the	other	way	are	known	as	derived	data	types.	These	data	types	are	normally	built
by	the	combination	of	primary	or	built-in	data	types	and	associated	operations	on	them.
For	example	−

List
Array
Stack	Queue



Basic	Operations

The	data	in	the	data	structures	are	processed	by	certain	operations.	The	particular	data
structure	chosen	largely	depends	on	the	frequency	of	the	operation	that	needs	to	be
performed	on	the	data	structure.

Traversing
Searching
Insertion
Deletion
Sorting	Merging



9.	Arrays	Data	Structures	&	Algorithms
Array	is	a	container	which	can	hold	a	fix	number	of	items	and	these	items	should	be	of	the
same	type.	Most	of	the	data	structures	make	use	of	arrays	to	implement	their	algorithms.
Following	are	the	important	terms	to	understand	the	concept	of	Array.

Element	−	Each	item	stored	in	an	array	is	called	an	element.
Index	−	Each	location	of	an	element	in	an	array	has	a	numerical	index,	which	is	used	to
identify	the	element.



ArrayRepresentation

Arrays	can	be	declared	in	various	ways	in	different	languages.	For	illustration,	let’s	take	C
array	declaration.

Arrays	can	be	declared	in	various	ways
in	different	languages.	For	illustration,	let’s	take	C	array	declaration.

As	per	the	above	illustration,
following	are	the	important	points	to	be	considered.
Index	starts	with	0.
Array	length	is	8	which	means	it	can	store	8	elements.
Each	element	can	be	accessed	via	its	index.	For	example,	we	can	fetch	an	element	at	index
6	as	9.



Basic	Operations

Following	are	the	basic	operations	supported	by	an	array.
Traverse	−	Prints	all	the	array	elements	one	by	one.
Insertion	−	Adds	an	element	at	the	given	index.
Deletion	−	Deletes	an	element	at	the	given	index.
Search	−	Searches	an	element	using	the	given	index	or	by	the	value.
Update	−	Updates	an	element	at	the	given	index.
In	C,	when	an	array	is	initialized	with	size,	then	it	assigns	defaults	values	to	its	elements	in
following	order.
Data	Type	Default	Value
bool	false
char	0
int	0
float	0.0
double	0.0f
void	wchar_t	0



Insertion	Operation

Insert	operation	is	to	insert	one	or	more	data	elements	into	an	array.	Based	on	the
requirement,	a	new	element	can	be	added	at	the	beginning,	end,	or	any	given	index	of
array.

Here,	we	see	a	practical	implementation	of	insertion	operation,	where	we	add	data	at	the
end	of	the	array	−

Algorithm

Let	Array	be	a	linear	unordered	array	of	MAX	elements.

Example

Result
Let	LA	be	a	Linear	Array	(unordered)	with	N	elements	and	K	is	a	positive	integer	such
that	K<=N.	Following	is	the	algorithm	where	ITEM	is	inserted	into	the	Kthposition	of	LA
−

1.	Start
2.	Set	J=N
3.	Set	N	=	N+1
4.	Repeat	steps	5	and	6	while	J	>=	K
5.	Set	LA[J+1]	=	LA[J]
6.	Set	J	=	J-1
7.	Set	LA[K]	=	ITEM
8.	Stop

Example

Following	is	the	implementation	of	the	above	algorithm	−

#include	<stdio.h>
main()	{
int	LA[]	=	{1,3,5,7,8};
int	item	=	10,	k	=	3,	n	=	5;
int	i	=	0,	j	=	n;

printf(“The	original	array	elements	are	:\n”);

for(i	=	0;	i<n;	i++)	{
printf(“LA[%d]	=	%d	\n”,	i,	LA[i]);
}

n	=	n	+	1;

while(	j	>=	k){
LA[j+1]	=	LA[j];	j	=	j	-	1;



}
LA[k]	=	item;
printf(“The	array	elements	after	insertion	:\n”);

for(i	=	0;	i<n;	i++)	{
printf(“LA[%d]	=	%d	\n”,	i,	LA[i]);
}
}

When	we	compile	and	execute	the	above	program,	it	produces	the	following	result	−

The	original	array	elements	are	:
LA[0]=1	
LA[1]=3	
LA[2]=5	
LA[3]=7	
LA[4]=8	
The	array	elements	after	insertion	:
LA[0]=1	
LA[1]=3	
LA[2]=5	
LA[3]=10
LA[4]=7	
LA[5]=8

For	other	variations	of	array	insertion	operation	click	here



ArrayInsertions

In	the	previous	section,	we	have	learnt	how	the	insertion	operation	works.	It	is	not	always
necessary	that	an	element	is	inserted	at	the	end	of	an	array.	Following	can	be	a	situation
with	array	insertion	−

Insertion	at	the	beginning	of	an	array
Insertion	at	the	given	index	of	an	array
Insertion	after	the	given	index	of	an	array	Insertion	before	the	given	index	of	an	array



Insertion	at	the	BeginningofanArray

When	the	insertion	happens	at	the	beginning,	it	causes	all	the	existing	data	items	to	shift
one	step	downward.	Here,	we	design	and	implement	an	algorithm	to	insert	an	element	at
the	beginning	of	an	array.

Algorithm

We	assume	A	is	an	array	with	N	elements.	The	maximum	numbers	of	elements	it	can	store
is	defined	by	MAX.	We	shall	first	check	if	an	array	has	any	empty	space	to	store	any
element	and	then	we	proceed	with	the	insertion	process.

begin
IF	N	=	MAX,	return	ELSE
N	=	N	+	1
For	All	Elements	in	A
Move	to	next	adjacent	location
A[FIRST]	=	New_Element	end

Implementation	in	C

#include	<stdio.h>	#define	MAX	5

void	main()	{
int	array[MAX]	=	{2,	3,	4,	5};
int	N	=	4;	//	number	of	elements	in	array	int	i	=	0;	//	loop	variable
int	value	=	1;	//	new	data	element	to	be	stored	in	array

//	print	array	before	insertion
printf(“Printing	array	before	insertion	−\n”);	for(i	=	0;	i	<	N;	i++)	{
printf(“array[%d]	=	%d	\n”,	i,	array[i]);	}
//	now	shift	rest	of	the	elements	downwards	for(i	=	N;	i	>=	0;	i—)	{
array[i+1]	=	array[i];
}
//	add	new	element	at	first	position	array[0]	=	value;
//	increase	N	to	reflect	number	of	elements	N++;
//	print	to	confirm
printf(“Printing	array	after	insertion	−\n”);

for(i	=	0;	i	<	N;	i++)	{
printf(“array[%d]	=	%d\n”,	i,	array[i]);
}
}

This	program	should	yield	the	following	output	−

Printing	array	before	insertion	−	array[0]	=	2
array[1]	=	3
array[2]	=	4



array[3]	=	5
Printing	array	after	insertion	−	array[0]	=	1
array[1]	=	2
array[2]	=	3
array[3]	=	4
array[4]	=	5



Insertion	attheGivenIndexof	anArray

In	this	scenario,	we	are	given	the	exact	location	(	index)	of	an	array	where	a	new	data
element	(value)	needs	to	be	inserted.	First	we	shall	check	if	the	array	is	full,	if	it	is	not,
then	we	shall	move	all	data	elements	from	that	location	one	step	downward.	This	will
make	room	for	a	new	data	element.

Algorithm

We	assume	A	is	an	array	with	N	elements.	The	maximum	numbers	of	elements	it	can	store
is	defined	by	MAX.
begin
IF	N	=	MAX,	return	ELSE
N	=	N	+	1
SEEK	Location	index
For	All	Elements	from	A[index]	to	A[N]	Move	to	next	adjacent	location
A[index]	=	New_Element	end

Implementation	in	C

#include	<stdio.h>	#define	MAX	5
void	main()	{
int	array[MAX]	=	{1,	2,	4,	5};

int	N	=	4;
int	i	=	0;
int	index	=	2;	int	value	=	3;	//	number	of	elements	in	array	//	loop	variable
//	index	location	to	insert	new	value	//	new	data	element	to	be	inserted	//	print	array	before
insertion
printf(“Printing	array	before	insertion	−\n”);

for(i	=	0;	i	<	N;	i++)	{
printf(“array[%d]	=	%d	\n”,	i,	array[i]);
}

//	now	shift	rest	of	the	elements	downwards	for(i	=	N;	i	>=	index;	i—)	{
array[i+1]	=	array[i];
}
//	add	new	element	at	first	position	array[index]	=	value;
//	increase	N	to	reflect	number	of	elements	N++;
//	print	to	confirm
printf(“Printing	array	after	insertion	−\n”);

for(i	=	0;	i	<	N;	i++)	{
printf(“array[%d]	=	%d\n”,	i,	array[i]);
}
}



If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−

Printing	array	before	insertion	−	array[0]	=	1
array[1]	=	2
array[2]	=	4
array[3]	=	5
Printing	array	after	insertion	−	array[0]	=	1
array[1]	=	2
array[3]	=	4
array[4]	=	5



InsertionAftertheGivenIndexof	an	Array

In	this	scenario	we	are	given	a	location	(	index)	of	an	array	after	which	a	new	data
element	(value)	has	to	be	inserted.	Only	the	seek	process	varies,	the	rest	of	the	activities
are	the	same	as	in	the	previous	example.

Algorithm

We	assume	A	is	an	array	with	N	elements.	The	maximum	numbers	of	elements	it	can	store
is	defined	by	MAX.
begin
IF	N	=	MAX,	return	ELSE
N	=	N	+	1
SEEK	Location	index
For	All	Elements	from	A[index	+	1]	to	A[N]	Move	to	next	adjacent	location
A[index	+	1]	=	New_Element	end

Implementation	in	C

#include	<stdio.h>	#define	MAX	5
void	main()	{
int	array[MAX]	=	{1,	2,	4,	5};

int	N	=	4;	//	number	of	elements	in	array
int	i	=	0;	//	loop	variable
int	index	=	1;	//	index	location	after	which	value	will	be	inserted	int	value	=	3;	//	new	data
element	to	be	inserted

//	print	array	before	insertion
printf(“Printing	array	before	insertion	−\n”);

for(i	=	0;	i	<	N;	i++)	{
printf(“array[%d]	=	%d	\n”,	i,	array[i]);
}

//	now	shift	rest	of	the	elements	downwards	for(i	=	N;	i	>=	index	+	1;	i—)	{
array[i	+	1]	=	array[i];
}
//	add	new	element	at	first	position	array[index	+	1]	=	value;
//	increase	N	to	reflect	number	of	elements	N++;
//	print	to	confirm
printf(“Printing	array	after	insertion	−\n”);

for(i	=	0;	i	<	N;	i++)	{
printf(“array[%d]	=	%d\n”,	i,	array[i]);
}
}

If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−



Printing	array	before	insertion	−	array[0]	=	1
array[1]	=	2
array[2]	=	4
array[3]	=	5
Printing	array	after	insertion	−	array[0]	=	1
array[2]	=	3
array[3]	=	4
array[4]	=	5



InsertionBeforetheGivenIndexof	an	Array

In	this	scenario	we	are	given	a	location	(index)	of	an	array	before	which	a	new	data
element	(value)	has	to	be	inserted.	This	time	we	seek	till	index-1,	i.e.,	one	location	ahead
of	the	given	index.	Rest	of	the	activities	are	the	same	as	in	the	previous	example.

Algorithm

We	assume	A	is	an	array	with	N	elements.	The	maximum	numbers	of	elements	it	can	store
is	defined	by	MAX.
begin
IF	N	=	MAX,	return	ELSE
N	=	N	+	1
SEEK	Location	index
For	All	Elements	from	A[index	-	1]	to	A[N]	Move	to	next	adjacent	location
A[index	-	1]	=	New_Element	end

Implementation	in	C

#include	<stdio.h>	#define	MAX	5
void	main()	{
int	array[MAX]	=	{1,	2,	4,	5};

int	N	=	4;
int	i	=	0;
int	index	=	3;	int	value	=	3;	//	number	of	elements	in	array
//	loop	variable
//	index	location	before	which	value	will	be	inserted	//	new	data	element	to	be	inserted

//	print	array	before	insertion
printf(“Printing	array	before	insertion	−\n”);	for(i	=	0;	i	<	N;	i++)	{

printf(“array[%d]	=	%d	\n”,	i,	array[i]);	}
//	now	shift	rest	of	the	elements	downwards	for(i	=	N;	i	>=	index	+	1;	i—)	{
array[i	+	1]	=	array[i];
}
//	add	new	element	at	first	position	array[index	+	1]	=	value;
//	increase	N	to	reflect	number	of	elements	N++;
//	print	to	confirm
printf(“Printing	array	after	insertion	−\n”);

for(i	=	0;	i	<	N;	i++)	{
printf(“array[%d]	=	%d\n”,	i,	array[i]);
}
}

If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−

Printing	array	before	insertion	−	array[1]	=	2



array[2]	=	4
array[3]	=	5
Printing	array	after	insertion	−	array[0]	=	1
array[1]	=	2
array[2]	=	3
array[3]	=	4
array[4]	=	5



Deletion	Operation

Deletion	refers	to	removing	an	existing	element	from	the	array	and	re-organizing	all
elements	of	an	array.

Algorithm

Consider	LA	is	a	linear	array	with	N	elements	and	K	is	a	positive	integer	such	that	K<=N.
Following	is	the	algorithm	to	delete	an	element	available	at	the	Kthposition	of	LA.

1.	Start
2.	Set	J=K
3.	Repeat	steps	4	and	5	while	J	<	N
4.	Set	LA[J-1]	=	LA[J]
5.	Set	J	=	J+1
6.	Set	N	=	N-1
7.	Stop

Example

Following	is	the	implementation	of	the	above	algorithm	−

#include	<stdio.h>
main()	{
int	LA[]	=	{1,3,5,7,8};
int	k	=	3,	n	=	5;
int	i,	j;

printf(“The	original	array	elements	are	:\n”);	for(i	=	0;	i<n;	i++)	{
printf(“LA[%d]	=	%d	\n”,	i,	LA[i]);	}
j	=	k;

while(	j	<	n){
LA[j-1]	=	LA[j];	j	=	j	+	1;

}
n	=	n	-1;
printf(“The	array	elements	after	deletion	:\n”);

for(i	=	0;	i<n;	i++)	{
printf(“LA[%d]	=	%d	\n”,	i,	LA[i]);
}
}

When	we	compile	and	execute	the	above	program,	it	produces	the	following	result	−

The	original	array	elements	are	:	LA[0]=1	
LA[1]=3	
LA[2]=5	
LA[3]=7	



LA[4]=8	
The	array	elements	after	deletion	:	LA[0]=1	
LA[1]=3	
LA[2]=7	
LA[3]=8



SearchOperation

You	can	perform	a	search	for	an	array	element	based	on	its	value	or	its	index.

Algorithm

Consider	LA	is	a	linear	array	with	N	elements	and	K	is	a	positive	integer	such	that	K<=N.
Following	is	the	algorithm	to	find	an	element	with	a	value	of	ITEM	using	sequential
search.

1.	Start
2.	Set	J=0
3.	Repeat	steps	4	and	5	while	J	<	N
4.	IF	LA[J]	is	equal	ITEM	THEN	GOTO	STEP	6
5.	Set	J	=	J	+1
6.	PRINT	J,	ITEM
7.	Stop

Example

Following	is	the	implementation	of	the	above	algorithm	−

#include	<stdio.h>
main()	{
int	LA[]	=	{1,3,5,7,8};
int	item	=	5,	n	=	5;
int	i	=	0,	j	=	0;
printf(“The	original	array	elements	are	:\n”);

for(i	=	0;	i<n;	i++)	{
printf(“LA[%d]	=	%d	\n”,	i,	LA[i]);
}

while(	j	<	n){
if(	LA[j]	==	item	){	break;
}
j	=	j	+	1;
}
printf(“Found	element	%d	at	position	%d\n”,	item,	j+1);	}
When	we	compile	and	execute	the	above	program,	it	produces	the	following	result	−

The	original	array	elements	are	:	LA[0]=1	
LA[1]=3	
LA[2]=5	
LA[3]=7	
LA[4]=8	
Found	element	5	at	position	3



Update	Operation

Update	operation	refers	to	updating	an	existing	element	from	the	array	at	a	given	index.

Algorithm

Consider	LA	is	a	linear	array	with	N	elements	and	K	is	a	positive	integer	such	that	K<=N.
Following	is	the	algorithm	to	update	an	element	available	at	the	Kthposition	of	LA.

1.	Start
2.	Set	LA[K-1]	=	ITEM
3.	Stop

Example

Following	is	the	implementation	of	the	above	algorithm	−

#include	<stdio.h>
main()	{
int	LA[]	=	{1,3,5,7,8};
int	k	=	3,	n	=	5,	item	=	10;
int	i,	j;

printf(“The	original	array	elements	are	:\n”);

for(i	=	0;	i<n;	i++)	{
printf(“LA[%d]	=	%d	\n”,	i,	LA[i]);
}

LA[k-1]	=	item;
printf(“The	array	elements	after	updation	:\n”);	for(i	=	0;	i<n;	i++)	{
printf(“LA[%d]	=	%d	\n”,	i,	LA[i]);	}
}
When	we	compile	and	execute	the	above	program,	it	produces	the	following	result	−

The	original	array	elements	are	:	LA[0]=1	
LA[1]=3	
LA[2]=5	
LA[3]=7	
LA[4]=8	
The	array	elements	after	updation	:	LA[0]=1	
LA[1]=3	
LA[2]=10
LA[3]=7	
LA[4]=8



Linked	List
10.	Linked	List─	BasicsData	Structures	&
Algorithms
A	linked	list	is	a	sequence	of	data	structures,	which	are	connected	together	via	links.

Linked	List	is	a	sequence	of	links	which	contains	items.	Each	link	contains	a	connection
to	another	link.	Linked	list	is	the	second	most-used	data	structure	after	array.	Following
are	the	important	terms	to	understand	the	concept	of	Linked	List.

Link	−	Each	link	of	a	linked	list	can	store	a	data	called	an	element.
Next	−	Each	link	of	a	linked	list	contains	a	link	to	the	next	link	called	Next.
Linked	List	−	A	Linked	List	contains	the	connection	link	to	the	first	link	called	First.



Linked	List	Representation

Linked	list	can	be	visualized	as	a	chain	of	nodes,	where	every	node	points	to	the	next
node.

As	per	the
above	illustration,	following	are	the	important	points	to	be	considered.
Linked	List	contains	a	link	element	called	first.
Each	link	carries	a	data	field(s)	and	a	link	field	called	next.
Each	link	is	linked	with	its	next	link	using	its	next	link.
Last	link	carries	a	link	as	null	to	mark	the	end	of	the	list.



Types	of	Linked	List

Following	are	the	various	types	of	linked	list.
Simple	Linked	List	−	Item	navigation	is	forward	only.
Doubly	Linked	List	−	Items	can	be	navigated	forward	and	backward.
Circular	Linked	List	−	Last	item	contains	link	of	the	first	element	as	next	and	the	first
element	has	a	link	to	the	last	element	as	previous.



Basic	Operations

Following	are	the	basic	operations	supported	by	a	list.
Insertion	−	Adds	an	element	at	the	beginning	of	the	list.
Deletion	−	Deletes	an	element	at	the	beginning	of	the	list.
Display	−	Displays	the	complete	list.
Search	−	Searches	an	element	using	the	given	key.	Delete	−	Deletes	an	element	using	the
given	key.



Insertion	Operation

Adding	a	new	node	in	linked	list	is	a	more	than	one	step	activity.	We	shall	learn	this	with
diagrams	here.	First,	create	a	node	using	the	same	structure	and	find	the	location	where	it
has	to	be	inserted.

Imagine	that
we	are	inserting	a	node	B	(NewNode),	between	A	(LeftNode)	and	C	(RightNode).	Then
point	B.next	to	C	
NewNode.next	−>	RightNode;
It	should	look	like	this	−

Now,	the	next
node	at	the	left	should	point	to	the	new	node.
LeftNode.next	−>	NewNode;

This	will	put
the	new	node	in	the	middle	of	the	two.	The	new	list	should	look	like	this	−

Similar	steps	should	be	taken	if	the	node	is	being	inserted	at	the	beginning	of	the	list.
While	inserting	it	at	the	end,	the	second	last	node	of	the	list	should	point	to	the	new	node
and	the	new	node	will	point	to	NULL.



Deletion	Operation

Deletion	is	also	a	more	than	one	step	process.	We	shall	learn	with	pictorial	representation.
First,	locate	the	target	node	to	be	removed,	by	using	searching	algorithms.

The	left
(previous)	node	of	the	target	node	now	should	point	to	the	next	node	of	the	target	node	−

LeftNode.next	−>	TargetNode.next;

This	will	remove	the	link	that	was	pointing	to	the	target	node.	Now,	using	the	following
code,	we	will	remove	what	the	target	node	is	pointing	at.

TargetNode.next	−>	NULL;

We	need	to	use
the	deleted	node.	We	can	keep	that	in	memory	otherwise	we	can	simply	deallocate
memory	and	wipe	off	the	target	node	completely.



Reverse	Operation

This	operation	is	a	thorough	one.	We	need	to	make	the	last	node	to	be	pointed	by	the	head
node	and	reverse	the	whole	linked	list.

First,	we	traverse	to	the	end	of	the	list.	It	should	be	pointing	to	NULL.	Now,	we	shall
make	it	point	to	its	previous	node	−

We	have	to	make	sure	that	the	last	node	is	not	the	lost	node.	So	we’ll	have	some	temp
node,	which	looks	like	the	head	node	pointing	to	the	last	node.	Now,	we	shall	make	all	left
side	nodes	point	to	their	previous	nodes	one	by	one.

Except	the	node	(first	node)	pointed	by
the	head	node,	all	nodes	should	point	to	their	predecessor,	making	them	their	new
successor.	The	first	node	will	point	to	NULL.

We’ll	make	the	head	node	point	to	the
new	first	node	by	using	the	temp	node.

The	linked	list	is	now	reversed.	To
see	linked	list	implementation	in	C	programming	language,	please	click	here.



Linked	List	Program	in	C

A	linked	list	is	a	sequence	of	data	structures,	which	are	connected	together	via	links.
Linked	List	is	a	sequence	of	links	which	contains	items.	Each	link	contains	a	connection
to	another	link.	Linked	list	is	the	second	most-used	data	structure	after	array.

Implementation	in	C

#include	<stdio.h>	#include	<string.h>	#include	<stdlib.h>	#include	<stdbool.h>

struct	node	{
int	data;
int	key;
struct	node	*next;
};

struct	node	*head	=	NULL;	struct	node	*current	=	NULL;

//display	the	list	void	printList()	{

struct	node	*ptr	=	head;	printf(“\n[	“);
//start	from	the	beginning
while(ptr	!=	NULL)

{
printf(“(%d,%d)	“,ptr->key,ptr->data);	ptr	=	ptr->next;

}
printf(”	]”);	}

//insert	link	at	the	first	location	void	insertFirst(int	key,	int	data)	{

//create	a	link
struct	node	*link	=	(struct	node*)	malloc(sizeof(struct	node));	link->key	=	key;	link->data
=	data;

//point	it	to	old	first	node	link->next	=	head;
//point	first	to	new	first	node	head	=	link;
}

//delete	first	item
struct	node*	deleteFirst()	{

//save	reference	to	first	link	struct	node	*tempLink	=	head;
//mark	next	to	first	link	as	first	head	=	head->next;
//return	the	deleted	link	return	tempLink;
}

//is	list	empty	bool	isEmpty()	{

return	head	==	NULL;	}

int	length()	{



int	length	=	0;
struct	node	*current;

for(current	=	head;	current	!=	NULL;	current	=	current->next)

{
length++;
}

return	length;	}
//find	a	link	with	given	key	struct	node*	find(int	key){
//start	from	the	first	link	struct	node*	current	=	head;
//if	list	is	empty	if(head	==	NULL)	{
return	NULL;	}
//navigate	through	list	while(current->key	!=	key){
//if	it	is	last	node
if(current->next	==	NULL){	return	NULL;

}else	{
//go	to	next	link
current	=	current->next;

}
}
//if	data	found,	return	the	current	Link	return	current;
}
//delete	a	link	with	given	key	struct	node*	delete(int	key){

//start	from	the	first	link	struct	node*	current	=	head;	struct	node*	previous	=	NULL;

//if	list	is	empty	if(head	==	NULL){	return	NULL;	}
//navigate	through	list	while(current->key	!=	key){
//if	it	is	last	node
if(current->next	==	NULL){
return	NULL;

}else	{
//store	reference	to	current	link	previous	=	current;
//move	to	next	link
current	=	current->next;

}
}

//found	a	match,	update	the	link	if(current	==	head)	{
//change	first	to	point	to	next	link
head	=	head->next;
}else	{
//bypass	the	current	link
previous->next	=	current->next;	}
return	current;
}



void	sort(){
int	i,	j,	k,	tempKey,	tempData	;	struct	node	*current;
struct	node	*next;

int	size	=	length();
k	=	size	;
for	(	i	=	0	;	i	<	size	-	1	;	i++,	k—	)	{

current	=	head	;
next	=	head->next	;
for	(	j	=	1	;	j	<	k	;	j++	)	{

if	(	current->data	>	next->data	)	{	tempData	=	current->data	;	current->data	=	next->data;
next->data	=	tempData	;

tempKey	=	current->key;	current->key	=	next->key;	next->key	=	tempKey;

}
current	=	current->next;	next	=	next->next;	}
}
}

void	reverse(struct	node**	head_ref)	{	struct	node*	prev	=	NULL;
struct	node*	current	=	*head_ref;	struct	node*	next;

while	(current	!=	NULL)	{	next	=	current->next;	current->next	=	prev;	prev	=	current;
current	=	next;

}
*head_ref	=	prev;
}
main()	{

insertFirst(1,10);	insertFirst(2,20);	insertFirst(3,30);	insertFirst(4,1);	insertFirst(5,40);
insertFirst(6,56);

printf(“Original	List:	“);
//print	list	printList();

while(!isEmpty()){
struct	node	*temp	=	deleteFirst();	printf(“\nDeleted	value:”);
printf(“(%d,%d)	“,temp->key,temp->data);

}

printf(“\nList	after	deleting	all	items:	“);	printList();
insertFirst(1,10);
insertFirst(2,20);
insertFirst(3,30);
insertFirst(4,1);
insertFirst(5,40);
insertFirst(6,56);
printf(“\nRestored	List:	“);	printList();



printf(“\n”);

struct	node	*foundLink	=	find(4);

if(foundLink	!=	NULL){
printf(“Element	found:	“);
printf(“(%d,%d)	“,foundLink->key,foundLink->data);	printf(“\n”);

}else	{
printf(“Element	not	found.”);
}

delete(4);
printf(“List	after	deleting	an	item:	“);	printList();
printf(“\n”);
foundLink	=	find(4);

if(foundLink	!=	NULL){
printf(“Element	found:	“);
printf(“(%d,%d)	“,foundLink->key,foundLink->data);	printf(“\n”);

}else	{
printf(“Element	not	found.”);
}

printf(“\n”);	sort();

printf(“List	after	sorting	the	data:	“);	printList();
reverse(&head);
printf(“\nList	after	reversing	the	data:	“);	printList();
}

If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−

Original	List:	
[	(6,56)	(5,40)	(4,1)	(3,30)	(2,20)	(1,10)	]	Deleted	value:(6,56)	
Deleted	value:(5,40)	
Deleted	value:(4,1)
Deleted	value:(3,30)	
Deleted	value:(2,20)	
Deleted	value:(1,10)	
List	after	deleting	all	items:
[	]
Restored	List:	
[	(6,56)	(5,40)	(4,1)	(3,30)	(2,20)	(1,10)	]	Element	found:	(4,1)	
List	after	deleting	an	item:	
[	(6,56)	(5,40)	(3,30)	(2,20)	(1,10)	]	Element	not	found.
List	after	sorting	the	data:	
[	(1,10)	(2,20)	(3,30)	(5,40)	(6,56)	]	List	after	reversing	the	data:	
[	(6,56)	(5,40)	(3,30)	(2,20)	(1,10)	]



11.	Doubly	Linked	ListData	Structures	&
Algorithms
Doubly	Linked	List	is	a	variation	of	Linked	list	in	which	navigation	is	possible	in	both
ways,	either	forward	and	backward	easily	as	compared	to	Single	Linked	List.	Following
are	the	important	terms	to	understand	the	concept	of	doubly	linked	list.

Link	−	Each	link	of	a	linked	list	can	store	a	data	called	an	element.
Next	−	Each	link	of	a	linked	list	contains	a	link	to	the	next	link	called	Next.
Prev	−	Each	link	of	a	linked	list	contains	a	link	to	the	previous	link	called	Prev.
Linked	List	−	A	Linked	List	contains	the	connection	link	to	the	first	link	called	First	and
to	the	last	link	called	Last.



Doubly	Linked	List	Representation

As	per	the
above	illustration,	following	are	the	important	points	to	be	considered.
Doubly	Linked	List	contains	a	link	element	called	first	and	last.
Each	link	carries	a	data	field(s)	and	a	link	field	called	next.
Each	link	is	linked	with	its	next	link	using	its	next	link.
Each	link	is	linked	with	its	previous	link	using	its	previous	link.
The	last	link	carries	a	link	as	null	to	mark	the	end	of	the	list.



Basic	Operations

Following	are	the	basic	operations	supported	by	a	list.
Insertion	−	Adds	an	element	at	the	beginning	of	the	list.
Deletion	−	Deletes	an	element	at	the	beginning	of	the	list.
Insert	Last	−	Adds	an	element	at	the	end	of	the	list.
Delete	Last	−	Deletes	an	element	from	the	end	of	the	list.
Insert	After	−	Adds	an	element	after	an	item	of	the	list.
Delete	−	Deletes	an	element	from	the	list	using	the	key.
Display	forward	−	Displays	the	complete	list	in	a	forward	manner.	Display	backward	−
Displays	the	complete	list	in	a	backward	manner.



Insertion	Operation

Following	code	demonstrates	the	insertion	operation	at	the	beginning	of	a	doubly	linked
list.
//insert	link	at	the	first	location	void	insertFirst(int	key,	int	data)	{

//create	a	link
struct	node	*link	=	(struct	node*)	malloc(sizeof(struct	node));	link->key	=	key;
link->data	=	data;

if(isEmpty())	{
//make	it	the	last	link	last	=	link;

}else	{
//update	first	prev	link	head->prev	=	link;

}
//point	it	to	old	first	link	link->next	=	head;
//point	first	to	new	first	link	head	=	link;
}



Deletion	Operation

Following	code	demonstrates	the	deletion	operation	at	the	beginning	of	a	doubly	linked
list.
//delete	first	item
struct	node*	deleteFirst()	{
//save	reference	to	first	link	struct	node	*tempLink	=	head;
//if	only	one	link
if(head->next	==	NULL)	{	last	=	NULL;

}else	{
head->next->prev	=	NULL;
}

head	=	head->next;
//return	the	deleted	link	return	tempLink;
}



Insertion	attheEndof	an	Operation

Following	code	demonstrates	the	insertion	operation	at	the	last	position	of	a	doubly	linked
list.
//insert	link	at	the	last	location	void	insertLast(int	key,	int	data)	{

//create	a	link
struct	node	*link	=	(struct	node*)	malloc(sizeof(struct	node));	link->key	=	key;
link->data	=	data;
if(isEmpty())	{

//make	it	the	last	link
last	=	link;

}else	{
//make	link	a	new	last	link
last->next	=	link;
//mark	old	last	node	as	prev	of	new	link	link->prev	=	last;

}
//point	last	to	new	last	node
last	=	link;
}
To	see	the	implementation	in	C	programming	language,	please	click	here.



Doubly	Linked	List	PrograminC

Doubly	Linked	List	is	a	variation	of	Linked	list	in	which	navigation	is	possible	in	both
ways,	either	forward	and	backward	easily	as	compared	to	Single	Linked	List.

Implementation	in	C

#include	<stdio.h>	#include	<string.h>	#include	<stdlib.h>	#include	<stdbool.h>

struct	node	{	int	data;	int	key;

struct	node	*next;	struct	node	*prev;	};

//this	link	always	point	to	first	Link	struct	node	*head	=	NULL;
//this	link	always	point	to	last	Link	struct	node	*last	=	NULL;

struct	node	*current	=	NULL;
//is	list	empty
bool	isEmpty(){
return	head	==	NULL;	}

int	length(){
int	length	=	0;
struct	node	*current;

for(current	=	head;	current	!=	NULL;	current	=	current->next){	length++;
}

return	length;	}
//display	the	list	in	from	first	to	last	void	displayForward(){
//start	from	the	beginning	struct	node	*ptr	=	head;
//navigate	till	the	end	of	the	list	printf(“\n[	“);

while(ptr	!=	NULL){
printf(“(%d,%d)	“,ptr->key,ptr->data);	ptr	=	ptr->next;

}
printf(”	]”);	}
//display	the	list	from	last	to	first	void	displayBackward(){
//start	from	the	last	struct	node	*ptr	=	last;
//navigate	till	the	start	of	the	list	printf(“\n[	“);
while(ptr	!=	NULL){
//print	data
printf(“(%d,%d)	“,ptr->key,ptr->data);

//move	to	next	item	ptr	=	ptr	->prev;	printf(”	“);

}
printf(”	]”);	}
//insert	link	at	the	first	location	void	insertFirst(int	key,	int	data){

//create	a	link



struct	node	*link	=	(struct	node*)	malloc(sizeof(struct	node));	link->key	=	key;
link->data	=	data;

if(isEmpty()){
//make	it	the	last	link	last	=	link;

}else	{
//update	first	prev	link	head->prev	=	link;	}
//point	it	to	old	first	link	link->next	=	head;
//point	first	to	new	first	link	head	=	link;
}
//insert	link	at	the	last	location	void	insertLast(int	key,	int	data){

//create	a	link
struct	node	*link	=	(struct	node*)	malloc(sizeof(struct	node));	link->key	=	key;
link->data	=	data;

if(isEmpty()){
//make	it	the	last	link
last	=	link;

}else	{
//make	link	a	new	last	link
last->next	=	link;
//mark	old	last	node	as	prev	of	new	link	link->prev	=	last;

}
//point	last	to	new	last	node	last	=	link;
}

//delete	first	item	struct	node*	deleteFirst(){	//save	reference	to	first	link	struct	node
*tempLink	=	head;

//if	only	one	link
if(head->next	==	NULL){	last	=	NULL;

}else	{
head->next->prev	=	NULL;
}

head	=	head->next;
//return	the	deleted	link	return	tempLink;

}
//delete	link	at	the	last	location

struct	node*	deleteLast(){	//save	reference	to	last	link	struct	node	*tempLink	=	last;

//if	only	one	link
if(head->next	==	NULL){	head	=	NULL;

}else	{
last->prev->next	=	NULL;
}



last	=	last->prev;
//return	the	deleted	link	return	tempLink;
}
//delete	a	link	with	given	key
struct	node*	delete(int	key){

//start	from	the	first	link	struct	node*	current	=	head;	struct	node*	previous	=	NULL;

//if	list	is	empty	if(head	==	NULL){	return	NULL;	}
//navigate	through	list	while(current->key	!=	key){	//if	it	is	last	node

if(current->next	==	NULL){
return	NULL;
}else	{
//store	reference	to	current	link	previous	=	current;

//move	to	next	link	current	=	current->next;	}
}

//found	a	match,	update	the	link	if(current	==	head)	{
//change	first	to	point	to	next	link
head	=	head->next;
}else	{
//bypass	the	current	link
current->prev->next	=	current->next;	}
if(current	==	last){
//change	last	to	point	to	prev	link
last	=	current->prev;
}else	{
current->next->prev	=	current->prev;	}

return	current;	}

bool	insertAfter(int	key,	int	newKey,	int	data){	//start	from	the	first	link
struct	node	*current	=	head;

//if	list	is	empty	if(head	==	NULL){	return	false;	}
//navigate	through	list	while(current->key	!=	key){
//if	it	is	last	node
if(current->next	==	NULL){	return	false;

}else	{
//move	to	next	link	current	=	current->next;

}
}

//create	a	link
struct	node	*newLink	=	(struct	node*)	malloc(sizeof(struct	node));	newLink->key	=	key;

newLink->data	=	data;	if(current	==	last)	{
newLink->next	=	NULL;
last	=	newLink;



}else	{
newLink->next	=	current->next;	current->next->prev	=	newLink;

}

newLink->prev	=	current;	current->next	=	newLink;	return	true;

}

main()	{
insertFirst(1,10);	insertFirst(2,20);	insertFirst(3,30);	insertFirst(4,1);	insertFirst(5,40);
insertFirst(6,56);

printf(“\nList	(First	to	Last):	“);	displayForward();

printf(“\n”);
printf(“\nList	(Last	to	first):	“);	displayBackward();

printf(“\nList	,	after	deleting	first	record:	“);	deleteFirst();
displayForward();

printf(“\nList	,	after	deleting	last	record:	“);	deleteLast();
displayForward();

printf(“\nList	,	insert	after	key(4)	:	“);	insertAfter(4,7,	13);	displayForward();

printf(“\nList	,	after	delete	key(4)	:	“);
delete(4);
displayForward();

}
If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−
List	(First	to	Last):	
[	(6,56)	(5,40)	(4,1)	(3,30)	(2,20)	(1,10)	]

List	(Last	to	first):	
[	(1,10)	(2,20)	(3,30)	(4,1)	(5,40)	(6,56)	]	List	,	after	deleting	first	record:
[	(5,40)	(4,1)	(3,30)	(2,20)	(1,10)	]	List	,	after	deleting	last	record:	
[	(5,40)	(4,1)	(3,30)	(2,20)	]
List	,	insert	after	key(4)	:	
[	(5,40)	(4,1)	(4,13)	(3,30)	(2,20)	]	List	,	after	delete	key(4)	:	
[	(5,40)	(4,13)	(3,30)	(2,20)	]



12.	Circular	Linked	ListData	Structures	&
Algorithms
Circular	Linked	List	is	a	variation	of	Linked	list	in	which	the	first	element	points	to	the
last	element	and	the	last	element	points	to	the	first	element.	Both	Singly	Linked	List	and
Doubly	Linked	List	can	be	made	into	a	circular	linked	list.



SinglyLinkedListasCircular

In	singly	linked	list,	the	next	pointer	of	the	last	node	points	to	the	first	node.	



Doubly	LinkedListasCircular

In	doubly	linked	list,	the	next	pointer	of	the	last	node	points	to	the	first	node	and	the
previous	pointer	of	the	first	node	points	to	the	last	node	making	the	circular	in	both
directions.

As	per	the
above	illustration,	following	are	the	important	points	to	be	considered.
The	last	link’s	next	points	to	the	first	link	of	the	list	in	both	cases	of	singly	as	well	as
doubly	linked	list.
The	first	link’s	previous	points	to	the	last	of	the	list	in	case	of	doubly	linked	list.



Basic	Operations

Following	are	the	important	operations	supported	by	a	circular	list.
insert	−	Inserts	an	element	at	the	start	of	the	list.
delete	–	Deletes	an	element	from	the	start	of	the	list.
display	−	Displays	the	list.



Insertion	Operation

Following	code	demonstrates	the	insertion	operation	in	a	circular	linked	list	based	on
single	linked	list.

//insert	link	at	the	first	location
void	insertFirst(int	key,	int	data)	{
//create	a	link
struct	node	*link	=	(struct	node*)	malloc(sizeof(struct	node));
link->key	=	key;
link->data=	data;

if	(isEmpty())	{
head	=	link;
head->next	=	head;

}else	{
//point	it	to	old	first	node	link->next	=	head;

//point	first	to	new	first	node	head	=	link;
}
}



Deletion	Operation

Following	code	demonstrates	the	deletion	operation	in	a	circular	linked	list	based	on
single	linked	list.

//delete	first	item
struct	node	*	deleteFirst()	{	//save	reference	to	first	link
struct	node	*tempLink	=	head;

if(head->next	==	head){	head	=	NULL;
return	tempLink;

}
//mark	next	to	first	link	as	first	head	=	head->next;

//return	the	deleted	link	return	tempLink;
}



Display	List	Operation

Following	code	demonstrates	the	display	list	operation	in	a	circular	linked	list.

//display	the	list
void	printList()	{
struct	node	*ptr	=	head;
printf(“\n[	“);

//start	from	the	beginning
if(head	!=	NULL)	{
while(ptr->next	!=	ptr)	{
printf(“(%d,%d)	“,ptr->key,ptr->data);	ptr	=	ptr->next;
}
}
printf(”	]”);	}
To	know	about	its	implementation	in	C	programming	language,	please	click	here.



Circular	Linked	List	Programin	C

Circular	Linked	List	is	a	variation	of	Linked	list	in	which	the	first	element	points	to	the
last	element	and	the	last	element	points	to	the	first	element.	Both	Singly	Linked	List	and
Doubly	Linked	List	can	be	made	into	a	circular	linked	list.

Implementation	in	C

#include	<stdio.h>	#include	<string.h>	#include	<stdlib.h>	#include	<stdbool.h>

struct	node	{	int	data;	int	key;

struct	node	*next;	};
struct	node	*head	=	NULL;	struct	node	*current	=	NULL;

bool	isEmpty(){
return	head	==	NULL;
}

int	length(){
int	length	=	0;
//if	list	is	empty	if(head	==	NULL){	return	0;
}
current	=	head->next;

while(current	!=	head){	length++;
current	=	current->next;

}
return	length;	}
//insert	link	at	the	first	location	void	insertFirst(int	key,	int	data){

//create	a	link
struct	node	*link	=	(struct	node*)	malloc(sizeof(struct	node));	link->key	=	key;
link->data	=	data;

if	(isEmpty())	{
head	=	link;
head->next	=	head;

}else	{
//point	it	to	old	first	node	link->next	=	head;

//point	first	to	new	first	node	head	=	link;
}
}
//delete	first	item
struct	node	*	deleteFirst(){
//save	reference	to	first	link	struct	node	*tempLink	=	head;

if(head->next	==	head){	head	=	NULL;
return	tempLink;



}
//mark	next	to	first	link	as	first	head	=	head->next;

//return	the	deleted	link	return	tempLink;
}
//display	the	list	void	printList(){
struct	node	*ptr	=	head;	printf(“\n[	“);
//start	from	the	beginning	if(head	!=	NULL){

while(ptr->next	!=	ptr){
printf(“(%d,%d)	“,ptr->key,ptr->data);	ptr	=	ptr->next;

}
}
printf(”	]”);	}
main()	{

insertFirst(1,10);	insertFirst(2,20);	insertFirst(3,30);	insertFirst(4,1);	insertFirst(5,40);
insertFirst(6,56);	printf(“Original	List:	“);

//print	list	printList();

while(!isEmpty()){
struct	node	*temp	=	deleteFirst();	printf(“\nDeleted	value:”);
printf(“(%d,%d)	“,temp->key,temp->data);

}
printf(“\nList	after	deleting	all	items:	“);	printList();
}
If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−

Original	List:	
[	(6,56)	(5,40)	(4,1)	(3,30)	(2,20)	]	Deleted	value:(6,56)	
Deleted	value:(5,40)	
Deleted	value:(4,1)
Deleted	value:(3,30)	
Deleted	value:(2,20)	
Deleted	value:(1,10)	
List	after	deleting	all	items:	[	]



Stack	&	Queue
13.	Stack	Data	Structures	&	Algorithms
A	stack	is	an	Abstract	Data	Type	(ADT),	commonly	used	in	most	programming	languages.
It	is	named	stack	as	it	behaves	like	a	real-world	stack,	for	example	–	a	deck	of	cards	or	a
pile	of	plates,	etc.

A	real-world	stack	allows	operations	at	one	end	only.	For	example,	we	can	place	or
remove	a	card	or	plate	from	the	top	of	the	stack	only.	Likewise,	Stack	ADT	allows	all	data
operations	at	one	end	only.	At	any	given	time,	we	can	only	access	the	top	element	of	a
stack.

This	feature	makes	it	LIFO	data	structure.	LIFO	stands	for	Last-in-first-out.	Here,	the
element	which	is	placed	(inserted	or	added)	last,	is	accessed	first.	In	stack	terminology,
insertion	operation	is	called	PUSH	operation	and	removal	operation	is	called	POP
operation.



StackRepresentation

The	following	diagram	depicts	a	stack	and	its	operations	−

A	stack	can	be	implemented	by	means	of	Array,	Structure,	Pointer,	and	Linked	List.	Stack
can	either	be	a	fixed	size	one	or	it	may	have	a	sense	of	dynamic	resizing.	Here,	we	are
going	to	implement	stack	using	arrays,	which	makes	it	a	fixed	size	stack	implementation.



Basic	Operations

Stack	operations	may	involve	initializing	the	stack,	using	it	and	then	de-initializing	it.
Apart	from	these	basic	stuffs,	a	stack	is	used	for	the	following	two	primary	operations	−
push()	−	Pushing	(storing)	an	element	on	the	stack.
pop()	−	Removing	(accessing)	an	element	from	the	stack.
When	data	is	PUSHed	onto	stack.	To	use	a	stack	efficiently,	we	need	to	check	the	status	of
stack	as	well.	For	the	same	purpose,	the	following	functionality	is	added	to	stacks	−
peek()	−	get	the	top	data	element	of	the	stack,	without	removing	it.
isFull()	−	check	if	stack	is	full.
isEmpty()	−	check	if	stack	is	empty.

At	all	times,	we	maintain	a	pointer	to	the	last	PUSHed	data	on	the	stack.	As	this	pointer
always	represents	the	top	of	the	stack,	hence	named	top.	The	top	pointer	provides	top
value	of	the	stack	without	actually	removing	it.

First	we	should	learn	about	procedures	to	support	stack	functions	−



peek()

Algorithm	of	peek()	function	−
begin	procedure	peek
return	stack[top]
end	procedure
Implementation	of	peek()	function	in	C	programming	language	−

int	peek()	{
return	stack[top];
}



isfull()

Algorithm	of	isfull()	function	−
begin	procedure	isfull

if	top	equals	to	MAXSIZE	return	true
else
return	false
endif

end	procedure
Implementation	of	isfull()	function	in	C	programming	language	−

bool	isfull()	{
if(top	==	MAXSIZE)	return	true;

else
return	false;	}



isempty()

Algorithm	of	isempty()	function	−
begin	procedure	isempty

if	top	less	than	1	return	true
else
return	false
endif

end	procedure	Implementation	of	isempty()	function	in	C	programming	language	is
slightly	different.	We	initialize	top	at	-1,	as	the	index	in	array	starts	from	0.	So	we	check	if
the	top	is	below	zero	or	-1	to	determine	if	the	stack	is	empty.	Here’s	the	code	−

bool	isempty()	{	if(top	==	-1)	return	true;	else
return	false;	}



Push	Operation

The	process	of	putting	a	new	data	element	onto	stack	is	known	as	a	Push	Operation.	Push
operation	involves	a	series	of	steps	−
Step	1	−	Checks	if	the	stack	is	full.
Step	2	−	If	the	stack	is	full,	produces	an	error	and	exit.
Step	3	−	If	the	stack	is	not	full,	increments	top	to	point	next	empty	space.
Step	4	−	Adds	data	element	to	the	stack	location,	where	top	is	pointing.

Step	5	−	Returns	success.

If	the	linked	list	is	used	to	implement	the	stack,	then	in	step	3,	we	need	to	allocate	space
dynamically.

Algorithm	for	PUSH	Operation

A	simple	algorithm	for	Push	operation	can	be	derived	as	follows	−
begin	procedure	push:	stack,	data

if	stack	is	full	return	null
endif

top	←	top	+	1
stack[top]	←	data
end	procedure
Implementation	of	this	algorithm	in	C,	is	very	easy.	See	the	following	code	−

void	push(int	data)	{
if(!isFull())	{
top	=	top	+	1;
stack[top]	=	data;

}else	{
printf(“Could	not	insert	data,	Stack	is	full.\n”);
}
}



PopOperation

Accessing	the	content	while	removing	it	from	the	stack,	is	known	as	a	Pop	Operation.	In
an	array	implementation	of	pop()	operation,	the	data	element	is	not	actually	removed,
instead	top	is	decremented	to	a	lower	position	in	the	stack	to	point	to	the	next	value.	But
in	linked-list	implementation,	pop()	actually	removes	data	element	and	deallocates
memory	space.

A	Pop	operation	may	involve	the	following	steps	−
Step	1	−	Checks	if	the	stack	is	empty.

Step	2	−	If	the	stack	is	empty,	produces	an	error	and	exit.	Step	3	−	If	the	stack	is	not
empty,	accesses	the	data	element	at	which	top	is	pointing.

Step	4	−	Decreases	the	value	of	top	by	1.	Step	5	−	Returns	success.	

Algorithm	for	Pop	Operation

A	simple	algorithm	for	Pop	operation	can	be	derived	as	follows	−
begin	procedure	pop:	stack

if	stack	is	empty
return	null
endif

data	←	stack[top]
top	←	top	-	1
return	data
end	procedure
Implementation	of	this	algorithm	in	C,	is	as	follows	−
int	pop(int	data)	{

if(!isempty())	{
data	=	stack[top];
top	=	top	-	1;
return	data;

}else	{



printf(“Could	not	retrieve	data,	Stack	is	empty.\n”);
}
}

For	a	complete	stack	program	in	C	programming	language,	please	click	here.



StackPrograminC

We	shall	see	the	stack	implementation	in	C	programming	language	here.	You	can	try	the
program	by	clicking	on	the	Try-it	button.	To	learn	the	theory	aspect	of	stacks,	click	on
visit	previous	page.

Implementation	in	C

#include	<stdio.h>

int	MAXSIZE	=	8;	int	stack[8];	int	top	=	-1;

int	isempty()	{

if(top	==	-1)	return	1;
else
return	0;	}
int	isfull()	{

if(top	==	MAXSIZE)	return	1;
else
return	0;
}

int	peek()	{
return	stack[top];
}

int	pop()	{	int	data;

if(!isempty())	{
data	=	stack[top];
top	=	top	-	1;
return	data;

}else	{
printf(“Could	not	retrieve	data,	Stack	is	empty.\n”);
}
}

int	push(int	data)	{

if(!isfull())	{
top	=	top	+	1;
stack[top]	=	data;

}else	{
printf(“Could	not	insert	data,	Stack	is	full.\n”);
}
}
int	main()	{
//	push	items	on	to	the	stack	push(3);



push(5);
push(9);
push(1);
push(12);
push(15);

printf(“Element	at	top	of	the	stack:	%d\n”	,peek());	printf(“Elements:	\n”);

//	print	stack	data	while(!isempty())	{	int	data	=	pop();	printf(“%d\n”,data);

}
printf(“Stack	full:	%s\n”	,	isfull()?“true”:“false”);	printf(“Stack	empty:	%s\n”	,
isempty()?“true”:“false”);
return	0;	}
If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−

Element	at	top	of	the	stack:	15	Elements:
15
12
1	
9	
5	
3	
Stack	full:	false
Stack	empty:	true



14.	Expression	ParsingData	Structures	&
Algorithms
The	way	to	write	arithmetic	expression	is	known	as	a	notation.	An	arithmetic	expression
can	be	written	in	three	different	but	equivalent	notations,	i.e.,	without	changing	the
essence	or	output	of	an	expression.	These	notations	are	−

Infix	Notation	Prefix	(Polish)	Notation
Postfix	(Reverse-Polish)	Notation
These	notations	are	named	as	how	they	use	operator	in	expression.	We	shall	learn	the
same	here	in	this	chapter.



Infix	Notation

We	write	expression	in	infix	notation,	e.g.	a-b+c,	where	operators	are	used	in-between
operands.	It	is	easy	for	us	humans	to	read,	write,	and	speak	in	infix	notation	but	the	same
does	not	go	well	with	computing	devices.	An	algorithm	to	process	infix	notation	could	be
difficult	and	costly	in	terms	of	time	and	space	consumption.



PrefixNotation

In	this	notation,	operator	is	prefixed	to	operands,	i.e.	operator	is	written	ahead	of
operands.	For	example,	+ab.	This	is	equivalent	to	its	infix	notation	a+b.	Prefix	notation	is
also	known	as	Polish	Notation.



PostfixNotation

This	notation	style	is	known	as	Reversed	Polish	Notation.	In	this	notation	style,	the
operator	is	postfixed	to	the	operands	i.e.,	the	operator	is	written	after	the	operands.	For
example,	ab+.	This	is	equivalent	to	its	infix	notation	a+b.

The	following	table	briefly	tries	to	show	the	difference	in	all	three	notations	−
Sr.	Infix	Notation	Prefix	Notation	Postfix	NotationNo.
1	a	+	b	+	a	b	a	b	+
2	(a	+	b)	*	c	*	+	a	b	c	a	b	+	c	*
3	a	*	(b	+	c)	*	a	+	b	c	a	b	c	+	*
4	a	/	b	+	c	/	d	+	/	a	b	/	c	d	a	b	/	c	d	/	+	5	(a	+	b)	*	(c	+	d)	*	+	a	b	+	c	d	a	b	+	c	d	+	*	6	((a	+
b)	*	c)	-	d	-	*	+	a	b	c	d	a	b	+	c	*	d



ParsingExpressions

As	we	have	discussed,	it	is	not	a	very	efficient	way	to	design	an	algorithm	or	program	to
parse	infix	notations.	Instead,	these	infix	notations	are	first	converted	into	either	postfix	or
prefix	notations	and	then	computed.

To	parse	any	arithmetic	expression,	we	need	to	take	care	of	operator	precedence	and
associativity	also.

Precedence

When	an	operand	is	in	between	two	different	operators,	which	operator	will	take	the
operand	first,	is	decided	by	the	precedence	of	an	operator	over	others.	For	example	−

As	multiplication	operation	has	precedence	over
addition,	b	*	c	will	be	evaluated	first.	A	table	of	operator	precedence	is	provided	later.

Associativity

Associativity	describes	the	rule	where	operators	with	the	same	precedence	appear	in	an
expression.	For	example,	in	expression	a+b−c,	both	+	and	–	have	the	same	precedence,
then	which	part	of	the	expression	will	be	evaluated	first,	is	determined	by	associativity	of
those	operators.	Here,	both	+	and	−	are	left	associative,	so	the	expression	will	be	evaluated
as	(a+b)−c.

Precedence	and	associativity	determines	the	order	of	evaluation	of	an	expression.
Following	is	an	operator	precedence	and	associativity	table	(highest	to	lowest)	−
Sr.	OperatorNo.
Precedence	Associativity
1	Exponentiation	^	Highest	Right	Associative
2	Multiplication	(	*	)	&	Division	(	/	)	Second	Highest	Left	Associative
3	Addition	(	+	)	&	Subtraction	(	−	)	Lowest	Left	Associative

The	above	table	shows	the	default	behavior	of	operators.	At	any	point	of	time	in
expression	evaluation,	the	order	can	be	altered	by	using	parenthesis.	For	example	−	In
a+b*c,	the	expression	part	b*c	will	be	evaluated	first,	with	multiplication	as	precedence
over	addition.	We	here	use	parenthesis	for	a+b	to	be	evaluated	first,	like	(a+b)*c.



PostfixEvaluationAlgorithm

We	shall	now	look	at	the	algorithm	on	how	to	evaluate	postfix	notation	−

Step	1	−	scan	the	expression	f	rom	left	to	right
Step	2	−	if	it	is	an	operand	push	it	to	stack
Step	3	−	if	it	is	an	operator	pull	operand	from	stack	and	perform	operation	Step	4	−	store
the	output	of	step	3,	back	to	stack
Step	5	−	scan	the	expression	until	all	operands	are	consumed	Step	6	−	pop	the	stack	and
perform	operation

To	see	the	implementation	in	C	programming	language,	please	click	here



ExpressionParsingUsingStack

Infix	notation	is	easier	for	humans	to	read	and	understand	whereas	for	electronic	machines
like	computers,	postfix	is	the	best	form	of	expression	to	parse.	We	shall	see	here	a
program	to	convert	and	evaluate	infix	notation	to	postfix	notation	−

#include<stdio.h>	#include<string.h>

//char	stack
char	stack[25];	int	top	=	-1;

void	push(char	item)	{	stack[++top]	=	item;
}

char	pop()	{
return	stack[top—];
}
//returns	precedence	of	operators	int	precedence(char	symbol)	{

switch(symbol)	{	case	‘+’:
case	‘-‘:

return	2;	break;
case	‘*’:
case	‘/’:
return	3;	break;
case	‘^’:
return	4;	break;
case	‘(‘:
case	‘)’:
case	‘#’:
return	1;	break;
}
}

//check	whether	the	symbol	is	operator?	int	isOperator(char	symbol)	{

switch(symbol)	{	case	‘+’:
case	‘-‘:
case	‘*’:
case	‘/’:
case	‘^’:
case	‘(‘:
case	‘)’:

return	1;	break;
default:	return	0;

}
}

//converts	infix	expression	to	postfix	void	convert(char	infix[],char	postfix[])	{	int



i,symbol,j	=	0;
stack[++top]	=	‘#’;

for(i	=	0;i<strlen(infix);i++)	{	symbol	=	infix[i];

if(isOperator(symbol)	==	0)	{	postfix[j]	=	symbol;
j++;

}	else	{
if(symbol	==	‘(‘)	{
push(symbol);

}else	{
if(symbol	==	‘)’)	{

while(stack[top]	!=	‘(‘)	{	postfix[j]	=	pop();	j++;

}

pop();//pop	out	(.
}	else	{
if(precedence(symbol)>precedence(stack[top]))	{	push(symbol);
}else	{

while(precedence(symbol)<=precedence(stack[top]))	{	postfix[j]	=	pop();
j++;

}
push(symbol);	}
}
}
}
}

while(stack[top]	!=	‘#’)	{	postfix[j]	=	pop();	j++;

}
postfix[j]=’\0’;//null	terminate	string.	}

//int	stack
int	stack_int[25];	int	top_int	=	-1;

void	push_int(int	item)	{	stack_int[++top_int]	=	item;
}

char	pop_int()	{
return	stack_int[top_int—];
}

//evaluates	postfix	expression	int	evaluate(char	*postfix){
char	ch;
int	i	=	0,operand1,operand2;
while(	(ch	=	postfix[i++])	!=	‘\0’)	{
if(isdigit(ch))	{	push_int(ch-‘0’);	//	Push	the	operand



}else	{
//Operator,pop	two	operands	
operand2	=	pop_int();
operand1	=	pop_int();

switch(ch)	{
case	‘+’:
push_int(operand1+operand2);	break;

case	‘-‘:
push_int(operand1-operand2);	break;

case	‘*’:
push_int(operand1*operand2);	break;

case	‘/’:
push_int(operand1/operand2);	break;

}
}
}
return	stack_int[top_int];	}

void	main()	{
char	infix[25]	=	“1*(2+3)”,postfix[25];	convert(infix,postfix);

printf(“Infix	expression	is:	%s\n”	,	infix);
printf(“Postfix	expression	is:	%s\n”	,	postfix);	printf(“Evaluated	expression	is:	%d\n”	,
evaluate(postfix));

}
If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−

Infix	expression	is:	1*(2+3)	Postfix	expression	is:	123+*	Result	is:	5



15.	Queue	Data	Structures	&	Algorithms
Queue	is	an	abstract	data	structure,	somewhat	similar	to	Stacks.	Unlike	stacks,	a	queue	is
open	at	both	its	ends.	One	end	is	always	used	to	insert	data	(enqueue)	and	the	other	is	used
to	remove	data	(dequeue).	Queue	follows	First-In-First-Out	methodology,	i.e.,	the	data
item	stored	first	will	be	accessed	first.

A	real-world	example	of	queue	can	be	a	single-lane	one-way	road,	where	the	vehicle
enters	first,	exits	first.	More	real-world	examples	can	be	seen	as	queues	at	the	ticket
windows	and	bus-stops.



QueueRepresentation

As	we	now	understand	that	in	queue,	we	access	both	ends	for	different	reasons.	The
following	diagram	given	below	tries	to	explain	queue	representation	as	data	structure	−

As	in	stacks,	a	queue	can	also	be	implemented	using	Arrays,	Linked-lists,	Pointers	and
Structures.	For	the	sake	of	simplicity,	we	shall	implement	queues	using	one-dimensional
array.



Basic	Operations

Queue	operations	may	involve	initializing	or	defining	the	queue,	utilizing	it,	and	then
completely	erasing	it	from	the	memory.	Here	we	shall	try	to	understand	the	basic
operations	associated	with	queues	−

enqueue()	−	add	(store)	an	item	to	the	queue.

dequeue()	−	remove	(access)	an	item	from	the	queue.
Few	more	functions	are	required	to	make	the	above-mentioned	queue	operation	efficient.
These	are	−

peek()	−	Gets	the	element	at	the	front	of	the	queue	without	removing	it.
isfull()	−	Checks	if	the	queue	is	full.
isempty()	−	Checks	if	the	queue	is	empty.
In	queue,	we	always	dequeue	(or	access)	data,	pointed	by	front	pointer	and	while
enqueing	(or	storing)	data	in	the	queue	we	take	help	of	rear	pointer.
Let’s	first	learn	about	supportive	functions	of	a	queue	−



peek()

This	function	helps	to	see	the	data	at	the	front	of	the	queue.	The	algorithm	of	peek()
function	is	as	follows	−
begin	procedure	peek
return	queue[front]
end	procedure
Implementation	of	peek()	function	in	C	programming	language	−

int	peek()	{
return	queue[front];
}



isfull()

As	we	are	using	single	dimension	array	to	implement	queue,	we	just	check	for	the	rear
pointer	to	reach	at	MAXSIZE	to	determine	that	the	queue	is	full.	In	case	we	maintain	the
queue	in	a	circular	linkedlist,	the	algorithm	will	differ.	Algorithm	of	isfull()	function	−

begin	procedure	isfull

if	rear	equals	to	MAXSIZE	return	true
else
return	false
endif

end	procedure
Implementation	of	isfull()	function	in	C	programming	language	−
bool	isfull()	{
if(rear	==	MAXSIZE	-	1)	return	true;
else
return	false;
}



isempty()

Algorithm	of	isempty()	function	−
begin	procedure	isempty

if	front	is	less	than	MIN	OR	front	is	greater	than	rear	return	true
else
return	false
endif

end	procedure
If	the	value	of	front	is	less	than	MIN	or	0,	it	tells	that	the	queue	is	not	yet	initialized,
hence	empty.
Here’s	the	C	programming	code	−
bool	isempty()	{
if(front	<	0	||	front	>	rear)	return	true;
else
return	false;
}



EnqueueOperation

Queues	maintain	two	data	pointers,	front	and	rear.	Therefore,	its	operations	are
comparatively	difficult	to	implement	than	that	of	stacks.
The	following	steps	should	be	taken	to	enqueue	(insert)	data	into	a	queue	−	Step	1	−
Check	if	the	queue	is	full.
Step	2	−	If	the	queue	is	full,	produce	overflow	error	and	exit.
Step	3	−	If	the	queue	is	not	full,	increment	rear	pointer	to	point	the	next	empty	space.
Step	4	−	Add	data	element	to	the	queue	location,	where	the	rear	is	pointing.
Step	5	−	Return	success.

Sometimes,	we	also
check	to	see	if	a	queue	is	initialized	or	not,	to	handle	any	unforeseen	situations.

Algorithm	for	enqueue	Operation

procedure	enqueue(data)	if	queue	is	full	return	overflow	endif

rear	←	rear	+	1	queue[rear]	←	data	return	true

end	procedure
Implementation	of	enqueue()	in	C	programming	language	−
int	enqueue(int	data)	if(isfull())
return	0;
rear	=	rear	+	1;	queue[rear]	=	data;
return	1;	end	procedure



Dequeue	Operation

Accessing	data	from	the	queue	is	a	process	of	two	tasks	−	access	the	data	where	front	is
pointing	and	remove	the	data	after	access.	The	following	steps	are	taken	to	perform
dequeue	operation	−

Step	1	−	Check	if	the	queue	is	empty.
Step	2	−	If	the	queue	is	empty,	produce	underflow	error	and	exit.
Step	3	−	If	the	queue	is	not	empty,	access	the	data	where	front	is	pointing.
Step	4	−	Increment	front	pointer	to	point	to	the	next	available	data	element.	Step	5	−

Return	success.	

Algorithm	for	dequeue	Operation

procedure	dequeue
if	queue	is	empty
return	underflow
end	if
data	=	queue[front]
front	←	front	+	1
return	true
end	procedure
Implementation	of	dequeue()	in	C	programming	language	−
int	dequeue()	{
if(isempty())
return	0;
int	data	=	queue[front];
front	=	front	+	1;
return	data;
}
For	a	complete	Queue	program	in	C	programming	language,	please	click	here.



QueuePrograminC

We	shall	see	the	stack	implementation	in	C	programming	language	here.	You	can	try	the
program	by	clicking	on	the	Try-it	button.	To	learn	the	theory	aspect	of	stacks,	click	on
visit	previous	page.

Implementation	in	C

#include	<stdio.h>	#include	<string.h>	#include	<stdlib.h>	#include	<stdbool.h>

#define	MAX	6

int	intArray[MAX];	int	front	=	0;
int	rear	=	-1;
int	itemCount	=	0;

int	peek(){
return	intArray[front];
}

bool	isEmpty(){
return	itemCount	==	0;
}
bool	isFull(){
return	itemCount	==	MAX;
}

int	size(){
return	itemCount;
}

void	insert(int	data){
if(!isFull()){	if(rear	==	MAX-1){	rear	=	-1;
}
intArray[++rear]	=	data;	itemCount++;
}
}
int	removeData(){
int	data	=	intArray[front++];

if(front	==	MAX){	front	=	0;
}
itemCount—;
return	data;
}

int	main()	{
/*	insert	5	items	*/	insert(3);
insert(5);
insert(9);



insert(1);
insert(12);

//	front	:	0
//	rear	:	4
//	–––––—//	index	:	0	1	2	3	4	//	–––––—//	queue	:	3	5	9	1	12	insert(15);

//	front	:	0
//	rear	:	5
//	––––––—//	index	:	0	1	2	3	4	5	//	––––––—//	queue	:	3	5	9	1	12	15

if(isFull()){
printf(“Queue	is	full!\n”);
}

//	remove	one	item	int	num	=	removeData();

printf(“Element	removed:	%d\n”,num);	//	front	:	1
//	rear	:	5
//	––––––
//	index	:	1	2	3	4	5
//	––––––
//	queue	:	5	9	1	12	15

//	insert	more	items	insert(16);

//	front	:	1
//	rear	:	-1
//	–––––––//	index	:	0	1	2	3	4	5	//	–––––––//	queue	:	16	5	9	1	12	15

//	As	queue	is	full,	elements	will	not	be	inserted.	insert(17);
insert(18);

//	–––––––//	index	:	0	1	2	3	4	5	//	–––––––//	queue	:	16	5	9	1	12	15
printf(“Element	at	front:	%d\n”,peek());

printf(“–––––––-\n”);	printf(“index	:	5	4	3	2	1	0\n”);	printf(“–––––––-\n”);	printf(“Queue:
“);

while(!isEmpty()){
int	n	=	removeData();	printf(“%d	“,n);

}
}
If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−

Queue	is	full!
Element	removed:	3	Element	at	front:	5
–––––––index	:	5	4	3	2	1	0
–––––––Queue:	5	9	1	12	15	16



Searching	Techniques
16.	Linear	SearchData	Structures	&
Algorithms
Linear	search	is	a	very	simple	search	algorithm.	In	this	type	of	search,	a	sequential	search
is	made	over	all	items	one	by	one.	Every	item	is	checked	and	if	a	match	is	found	then	that
particular	item	is	returned,	otherwise	the	search	continues	till	the	end	of	the	data
collection.

Algorithm

Linear	Search	(	Array	A,	Value	x)

Step	1:	Set	i	to	1
Step	2:	if	i	>	n	then	go	to	step	7
Step	3:	if	A[i]	=	x	then	go	to	step	6
Step	4:	Set	i	to	i	+	1
Step	5:	Go	to	Step	2
Step	6:	Print	Element	x	Found	at	index	i	and	go	to	step	8
Step	7:	Print	element	not	found
Step	8:	Exit

Pseudocode

procedure	linear_search	(list,	value)
for	each	item	in	the	list
if	match	item	==	value
return	the	item’s	location
end	if
end	for
end	procedure
To	know	about	linear	search	implementation	in	C	programming	language,	please
clickhere.



LinearSearchProgram	inC

Here	we	present	the	implementation	of	linear	search	in	C	programming	language.	The
output	of	the	program	is	given	after	the	code.

Linear	Search	Program

#include	<stdio.h>
#define	MAX	20
//	array	of	items	on	which	linear	search	will	be	conducted.
int	intArray[MAX]	=	{1,2,3,4,6,7,9,11,12,14,15,16,17,19,33,34,43,45,55,66};
void	printline(int	count){	int	i;

for(i	=	0;i	<count-1;i++){	printf(“=”);
}

printf(“=\n”);	}
//	this	method	makes	a	linear	search.	int	find(int	data){

int	comparisons	=	0;	int	index	=	-1;
int	i;
//	navigate	through	all	items	for(i	=	0;i<MAX;i++){

//	count	the	comparisons	made	comparisons++;
//	if	data	found,	break	the	loop

if(data	==	intArray[i]){	index	=	i;
break;

}
}
printf(“Total	comparisons	made:	%d”,	comparisons);	return	index;
}

void	display(){	int	i;
printf(“[“);

//	navigate	through	all	items	for(i	=	0;i<MAX;i++){
printf(“%d	“,intArray[i]);	}
printf(“]\n”);	}
main(){

printf(“Input	Array:	“);	display();
printline(50);
//find	location	of	1	int	location	=	find(55);

//	if	element	was	found	
if(location	!=	-1)
printf(“\nElement	found	at	location:	%d”	,(location+1));	else
printf(“Element	not	found.”);
}



If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−

Input	Array:	[1	2	3	4	6	7	9	11	12	14	15	16	17	19	33	34	43	45	55	66	]
==================================================
Total	comparisons	made:	19
Element	found	at	location:	19



17.	Binary	SearchData	Structures	&
Algorithms
Binary	search	is	a	fast	search	algorithm	with	runtime	complexity	of	Ο(log	n).	This	search
algorithm	works	on	the	principle	of	divide	and	conquer.	For	this	algorithm	to	work
properly,	the	data	collection	should	be	in	the	sorted	form.

Binary	search	looks	for	a	particular	item	by	comparing	the	middle	most	item	of	the
collection.	If	a	match	occurs,	then	the	index	of	item	is	returned.	If	the	middle	item	is
greater	than	the	item,	then	the	item	is	searched	in	the	sub-array	to	the	right	of	the	middle
item.	Otherwise,	the	item	is	searched	for	in	the	sub-array	to	the	left	of	the	middle	item.
This	process	continues	on	the	sub-array	as	well	until	the	size	of	the	subarray	reduces	to
zero.



HowBinarySearchWorks?

For	a	binary	search	to	work,	it	is	mandatory	for	the	target	array	to	be	sorted.	We	shall	learn
the	process	of	binary	search	with	a	pictorial	example.	The	following	is	our	sorted	array
and	let	us	assume	that	we	need	to	search	the	location	of	value	31	using	binary	search.

First,	we	shall	determine	half
of	the	array	by	using	this	formula	−
mid	=	low	+	(high	-	low)	/	2
Here	it	is,	0	+	(9	-	0	)	/	2	=	4	(integer	value	of	4.5).	So,	4	is	the	mid	of	the	array.

Now	we	compare	the	value	stored	at	location	4,	with	the	value	being	searched,	i.e.	31.	We
find	that	the	value	at	location	4	is	27,	which	is	not	a	match.	As	the	value	is	greater	than	27
and	we	have	a	sorted	array,	so	we	also	know	that	the	target	value	must	be	in	the	upper
portion	of	the	array.

We	change	our	low	to	mid	+	1	and	find	the	new	mid	value	again.

low	=	mid	+	1
mid	=	low	+	(high	-	low)	/	2
Our	new	mid	is	7	now.	We	compare	the	value	stored	at	location	7	with	our	target	value	31.

The	value	stored	at	location	7
is	not	a	match,	rather	it	is	less	than	what	we	are	looking	for.	So,	the	value	must	be	in	the
lower	part	from	this	location.

Hence,	we	calculate	the	mid
again.	This	time	it	is	5.

We	compare	the	value	stored



at	location	5	with	our	target	value.	We	find	that	it	is	a	match.

We	conclude	that	the	target
value	31	is	stored	at	location	5.
Binary	search	halves	the	searchable	items	and	thus	reduces	the	count	of	comparisons	to	be
made	to	very	less	numbers.

Pseudocode

The	pseudocode	of	binary	search	algorithms	should	look	like	this	−

Procedure	binary_search	A	←	sorted	array
n	←	size	of	array
x	←	value	ot	be	searched

Set	lowerBound	=	1	Set	upperBound	=	n	
while	x	not	found
if	upperBound	<	lowerBound	EXIT:	x	does	not	exists.
set	midPoint	=	lowerBound	+	(	upperBound	-	lowerBound	)	/	2
if	A[midPoint]	<	x
set	lowerBound	=	midPoint	+	1
if	A[midPoint]	>	x
set	upperBound	=	midPoint	-	1	
if	A[midPoint]	=	x	
EXIT:	x	found	at	location	midPoint
end	while
end	procedure
To	know	about	binary	search	implementation	using	array	in	C	programming	language,
please	click	here.



Binary	Search	Program	in	C

Binary	search	is	a	fast	search	algorithm	with	runtime	complexity	of	Ο(log	n).	This	search
algorithm	works	on	the	principle	of	divide	and	conquer.	For	this	algorithm	to	work
properly,	the	data	collection	should	be	in	a	sorted	form.

Implementation	in	C

#include	<stdio.h>
#define	MAX	20
//	array	of	items	on	which	linear	search	will	be	conducted.	int	intArray[MAX]	=
{1,2,3,4,6,7,9,11,12,14,15,16,17,19,33,34,43,45,55,66};
void	printline(int	count){	int	i;

for(i	=	0;i	<count-1;i++){	printf(“=”);
}

printf(“=\n”);	}

int	find(int	data){
int	lowerBound	=	0;	int	upperBound	=	MAX	-1;	int	midPoint	=	-1;
int	comparisons	=	0;	int	index	=	-1;

while(lowerBound	<=	upperBound){
printf(“Comparison	%d\n”	,	(comparisons	+1)	)	;	printf(“lowerBound	:	%d,	intArray[%d]
=	%d\n”,

lowerBound,lowerBound,intArray[lowerBound]);	printf(“upperBound	:	%d,	intArray[%d]
=	%d\n”,	upperBound,upperBound,intArray[upperBound]);
comparisons++;

//	compute	the	mid	point
//	midPoint	=	(lowerBound	+	upperBound)	/	2;	midPoint	=	lowerBound	+	(upperBound	-
lowerBound)	/	2;

//	data	found
if(intArray[midPoint]	==	data){
index	=	midPoint;
break;
}else	{
//	if	data	is	larger	
if(intArray[midPoint]	<	data){
//	data	is	in	upper	half
lowerBound	=	midPoint	+	1;
}
//	data	is	smaller	
else{
//	data	is	in	lower	half
upperBound	=	midPoint	-1;



}
}
}
printf(“Total	comparisons	made:	%d”	,	comparisons);	return	index;
}

void	display(){	int	i;
printf(“[“);

//	navigate	through	all	items	for(i	=	0;i<MAX;i++){
printf(“%d	“,intArray[i]);	}
printf(“]\n”);	}

main(){
printf(“Input	Array:	“);	display();
printline(50);

//find	location	of	1	int	location	=	find(55);
//	if	element	was	found	
if(location	!=	-1)
printf(“\nElement	found	at	location:	%d”	,(location+1));	else
printf(“\nElement	not	found.”);
}
If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−

Input	Array:	[1	2	3	4	6	7	9	11	12	14	15	16	17	19	33	34	43	45	55	66	]
==================================================
Comparison	1
lowerBound	:	0,	intArray[0]	=	1
upperBound	:	19,	intArray[19]	=	66
Comparison	2
lowerBound	:	10,	intArray[10]	=	15
upperBound	:	19,	intArray[19]	=	66
Comparison	3
lowerBound	:	15,	intArray[15]	=	34
upperBound	:	19,	intArray[19]	=	66
Comparison	4
lowerBound	:	18,	intArray[18]	=	55
upperBound	:	19,	intArray[19]	=	66
Total	comparisons	made:	4
Element	found	at	location:	19



18.	Interpolation	SearchData	Structures	&
Algorithms
Interpolation	search	is	an	improved	variant	of	binary	search.	This	search	algorithm	works
on	the	probing	position	of	the	required	value.	For	this	algorithm	to	work	properly,	the	data
collection	should	be	in	a	sorted	form	and	equally	distributed.

Binary	search	has	a	huge	advantage	of	time	complexity	over	linear	search.	Linear	search
has	worstcase	complexity	of	Ο(n)	whereas	binary	search	has	Ο(log	n).

There	are	cases	where	the	location	of	target	data	may	be	known	in	advance.	For	example,
in	case	of	a	telephone	directory,	if	we	want	to	search	the	telephone	number	of	Morphius.
Here,	linear	search	and	even	binary	search	will	seem	slow	as	we	can	directly	jump	to
memory	space	where	the	names	start	from	‘M’	are	stored.



Positioning	in	Binary	Search

In	binary	search,	if	the	desired	data	is	not	found	then	the	rest	of	the	list	is	divided	in	two
parts,	lower	and	higher.	The	search	is	carried	out	in	either	of	them.

Even	when	the	data	is	sorted,	binary	search	does	not	take	advantage	to	probe	the	position
of	the	desired	data.



PositionProbinginInterpolationSearch

Interpolation	search	finds	a	particular	item	by	computing	the	probe	position.	Initially,	the
probe	position	is	the	position	of	the	middle	most	item	of	the	collection.

If
a	match	occurs,	then	the	index	of	the	item	is	returned.	To	split	the	list	into	two	parts,	we
use	the	following	method	−
mid	=	Lo	+	((Hi	-	Lo)	/	(A[Hi]	-	A[Lo]))	*	(X	-	A[Lo])

where	−
A	=	list
Lo	=	Lowest	index	of	the	list
Hi	=	Highest	index	of	the	list
A[n]	=	Value	stored	at	index	n	in	the	list

If	the	middle	item	is	greater	than	the	item,	then	the	probe	position	is	again	calculated	in
the	sub-array	to	the	right	of	the	middle	item.	Otherwise,	the	item	is	searched	in	the
subarray	to	the	left	of	the	middle	item.	This	process	continues	on	the	sub-array	as	well
until	the	size	of	subarray	reduces	to	zero.

Runtime	complexity	of	interpolation	search	algorithm	is	Ο(log	(log	n))	as	compared	to
Ο(log	n)	of	BST	in	favorable	situations.

Algorithm

As	it	is	an	improvisation	of	the	existing	BST	algorithm,	we	are	mentioning	the	steps	to
search	the	‘target’	data	value	index,	using	position	probing	−

Step	1	−	Start	searching	data	from	middle	of	the	list.
Step	2	−	If	it	is	a	match,	return	the	index	of	the	item,	and	exit.	Step	3	−	If	it	is	not	a	match,
probe	position.
Step	4	−	Divide	the	list	using	probing	formula	and	find	the	new	middle.	Step	5	−	If	data	is
greater	than	middle,	search	in	higher	sub-list.	Step	6	−	If	data	is	smaller	than	middle,
search	in	lower	sub-list.	Step	7	−	Repeat	until	match.

Pseudocode

A	→	Array	list	N	→	Size	of	A	X	→	Target	Value

Procedure	Interpolation_Search()

Set	Lo	→	0	Set	Mid	→	-1	Set	Hi	→	N-1

While	X	does	not	match
if	Lo	equals	to	Hi	OR	A[Lo]	equals	to	A[Hi]	EXIT:	Failure,	Target	not	found
end	if
Set	Mid	=	Lo	+	((Hi	-	Lo)	/	(A[Hi]	-	A[Lo]))	*	(X	-	A[Lo])
if	A[Mid]	=	X



EXIT:	Success,	Target	found	at	Mid	else
if	A[Mid]	<	X
Set	Lo	to	Mid+1
else	if	A[Mid]	>	X
Set	Hi	to	Mid-1
end	if
end	if

End	While
End	Procedure
To	know	about	the	implementation	of	interpolation	search	in	C	programming	language,
click	here.



InterpolationSearch	Programin	C

Interpolation	search	is	an	improved	variant	of	binary	search.	This	search	algorithm	works
on	the	probing	position	of	the	required	value.	For	this	algorithm	to	work	properly,	the	data
collection	should	be	in	sorted	and	equally	distributed	form.

It’s	runtime	complexity	is	log2(log2	n).

Implementation	in	C

#include<stdio.h>
#define	MAX	10
//	array	of	items	on	which	linear	search	will	be	conducted.	int	list[MAX]	=	{	10,	14,	19,
26,	27,	31,	33,	35,	42,	44	};

int	find(int	data)	{	int	lo	=	0;
int	hi	=	MAX	-	1;	int	mid	=	-1;
int	comparisons	=	1;	int	index	=	-1;

while(lo	<=	hi)	{
printf(“\nComparison	%d	\n”	,	comparisons	)	;	printf(“lo	:	%d,	list[%d]	=	%d\n”,	lo,	lo,
list[lo]);	printf(“hi	:	%d,	list[%d]	=	%d\n”,	hi,	hi,	list[hi]);

comparisons++;

//	probe	the	mid	point
mid	=	lo	+	(((double)(hi	-	lo)	/	(list[hi]	-	list[lo]))	*	(data	-	list[lo]));	printf(“mid	=
%d\n”,mid);

//	data	found
if(list[mid]	==	data)	{	index	=	mid;
break;
}else	{
if(list[mid]	<	data)	{
//	if	data	is	larger,	data	is	in	upper	half
lo	=	mid	+	1;
}else	{
//	if	data	is	smaller,	data	is	in	lower	half
hi	=	mid	-	1;
}
}
}

printf(“\nTotal	comparisons	made:	%d”,	—comparisons);	return	index;
}

int	main()	{
//find	location	of	33	int	location	=	find(33);

//	if	element	was	found	



if(location	!=	-1)
printf(“\nElement	found	at	location:	%d”	,(location+1));

else
printf(“Element	not	found.”);
return	0;
}

If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−

Searching	33
Comparison	1
lo	:	0,	list[0]	=	10	hi	:	9,	list[9]	=	44	mid	=	6

Total	comparisons	made:	1	Element	found	at	location:	7	You	can	change	the	search	value
and	execute	the	program	to	test	it.



19.	Hash	Table	Data	Structures	&
Algorithms
Hash	Table	is	a	data	structure	which	stores	data	in	an	associative	manner.	In	a	hash	table,
data	is	stored	in	an	array	format,	where	each	data	value	has	its	own	unique	index	value.
Access	of	data	becomes	very	fast	if	we	know	the	index	of	the	desired	data.

Thus,	it	becomes	a	data	structure	in	which	insertion	and	search	operations	are	very	fast
irrespective	of	the	size	of	the	data.	Hash	Table	uses	an	array	as	a	storage	medium	and	uses
hash	technique	to	generate	an	index	where	an	element	is	to	be	inserted	or	is	to	be	located
from.



Hashing

Hashing	is	a	technique	to	convert	a	range	of	key	values	into	a	range	of	indexes	of	an	array.
We’re	going	to	use	modulo	operator	to	get	a	range	of	key	values.	Consider	an	example	of
hash	table	of	size	20,	and	the	following	items	are	to	be	stored.	Item	are	in	the	(key,value)
format.

(1,20)
(2,70)
(42,80)
(4,25)
(12,44)
(14,32)
(17,11)
(13,78)
(37,98)
Sr.	No.	Key	Hash	Array	Index
1	1	1	%	20	=	1	1
2	2	2	%	20	=	2	2
3	42	42	%	20	=	2	2
4	4	4	%	20	=	4	4
5	12	12	%	20	=	12	12
6	14	14	%	20	=	14	14
7	17	17	%	20	=	17	17
8	13	13	%	20	=	13	13	9	37	37	%	20	=	17	17



LinearProbing

As	we	can	see,	it	may	happen	that	the	hashing	technique	is	used	to	create	an	already	used
index	of	the	array.	In	such	a	case,	we	can	search	the	next	empty	location	in	the	array	by
looking	into	the	next	cell	until	we	find	an	empty	cell.	This	technique	is	called	linear
probing.

After	Linear	Sr.	No.	Key	Hash	Array	Index	Probing,
Array	Index

1	1	1	%	20	=	1	1	1
2	2	2	%	20	=	2	2	2
3	42	42	%	20	=	2	2	3
4	4	4	%	20	=	4	4	4
5	12	12	%	20	=	12	12	12
6	14	14	%	20	=	14	14	14	7	17	17	%	20	=	17	17	17
8	13	13	%	20	=	13	13	13	9	37	37	%	20	=	17	17	18



Basic	Operations

Following	are	the	basic	primary	operations	of	a	hash	table.	Search	−	Searches	an	element
in	a	hash	table.
Insert	−	inserts	an	element	in	a	hash	table.	Delete	−	Deletes	an	element	from	a	hash	table.



DataItem

Define	a	data	item	having	some	data	and	key,	based	on	which	the	search	is	to	be
conducted	in	a	hash	table.

struct	DataItem	{	int	data;
int	key;

};



Hash	Method

Define	a	hashing	method	to	compute	the	hash	code	of	the	key	of	the	data	item.

int	hashCode(int	key){
return	key	%	SIZE;
}



SearchOperation

Whenever	an	element	is	to	be	searched,	compute	the	hash	code	of	the	key	passed	and
locate	the	element	using	that	hash	code	as	index	in	the	array.	Use	linear	probing	to	get	the
element	ahead	if	the	element	is	not	found	at	the	computed	hash	code.	struct	DataItem
*search(int	key){

//get	the	hash	
int	hashIndex	=	hashCode(key);
//move	in	array	until	an	empty	while(hashArray[hashIndex]	!=	NULL){
if(hashArray[hashIndex]->key	==	key)	return	hashArray[hashIndex];
//go	to	next	cell	++hashIndex;
//wrap	around	the	table	hashIndex	%=	SIZE;	}
return	NULL;	}



Insert	Operation

Whenever	an	element	is	to	be	inserted,	compute	the	hash	code	of	the	key	passed	and
locate	the	index	using	that	hash	code	as	an	index	in	the	array.	Use	linear	probing	for	empty
location,	if	an	element	is	found	at	the	computed	hash	code.

void	insert(int	key,int	data){
struct	DataItem	*item	=	(struct	DataItem*)	malloc(sizeof(struct	DataItem));	item->data	=
data;
item->key	=	key;

//get	the	hash	
int	hashIndex	=	hashCode(key);

//move	in	array	until	an	empty	or	deleted	cell
while(hashArray[hashIndex]	!=	NULL	&&	hashArray[hashIndex]->key	!=	-1){	//go	to
next	cell
++hashIndex;
//wrap	around	the	table
hashIndex	%=	SIZE;	}

hashArray[hashIndex]	=	item;	}



Delete	Operation

Whenever	an	element	is	to	be	deleted,	compute	the	hash	code	of	the	key	passed	and	locate
the	index	using	that	hash	code	as	an	index	in	the	array.	Use	linear	probing	to	get	the
element	ahead	if	an	element	is	not	found	at	the	computed	hash	code.	When	found,	store	a
dummy	item	there	to	keep	the	performance	of	the	hash	table	intact.

struct	DataItem*	delete(struct	DataItem*	item){	int	key	=	item->key;
//get	the	hash	
int	hashIndex	=	hashCode(key);
//move	in	array	until	an	empty	while(hashArray[hashIndex]	!=NULL){
if(hashArray[hashIndex]->key	==	key){
struct	DataItem*	temp	=	hashArray[hashIndex];

//assign	a	dummy	item	at	deleted	position	hashArray[hashIndex]	=	dummyItem;	return
temp;

}
//go	to	next	cell
++hashIndex;

//wrap	around	the	table
hashIndex	%=	SIZE;
}
return	NULL;
}

To	know	about	hash	implementation	in	C	programming	language,	please	click	here.



Hash	Table	Program	in	C

Hash	Table	is	a	data	structure	which	stores	data	in	an	associative	manner.	In	hash	table,	the
data	is	stored	in	an	array	format	where	each	data	value	has	its	own	unique	index	value.
Access	of	data	becomes	very	fast,	if	we	know	the	index	of	the	desired	data.

Implementation	in	C

#include	<stdio.h>	#include	<string.h>	#include	<stdlib.h>	#include	<stdbool.h>

#define	SIZE	20

struct	DataItem	{	int	data;
int	key;

};

struct	DataItem*	hashArray[SIZE];	struct	DataItem*	dummyItem;	struct	DataItem*	item;

int	hashCode(int	key){	return	key	%	SIZE;
}

struct	DataItem	*search(int	key){	//get	the	hash	
int	hashIndex	=	hashCode(key);

//move	in	array	until	an	empty	while(hashArray[hashIndex]	!=	NULL){

if(hashArray[hashIndex]->key	==	key)	return	hashArray[hashIndex];	//go	to	next	cell
++hashIndex;

//wrap	around	the	table	hashIndex	%=	SIZE;	}
return	NULL;	}
void	insert(int	key,int	data){

struct	DataItem	*item	=	(struct	DataItem*)	malloc(sizeof(struct	DataItem));	item->data	=
data;
item->key	=	key;

//get	the	hash	
int	hashIndex	=	hashCode(key);

//move	in	array	until	an	empty	or	deleted	cell
while(hashArray[hashIndex]	!=	NULL	&&	hashArray[hashIndex]->key	!=	-1){	//go	to
next	cell
++hashIndex;

//wrap	around	the	table	hashIndex	%=	SIZE;	}
hashArray[hashIndex]	=	item;	}
struct	DataItem*	delete(struct	DataItem*	item){	int	key	=	item->key;

//get	the	hash	
int	hashIndex	=	hashCode(key);	//move	in	array	until	an	empty
while(hashArray[hashIndex]	!=	NULL){



if(hashArray[hashIndex]->key	==	key){
struct	DataItem*	temp	=	hashArray[hashIndex];

//assign	a	dummy	item	at	deleted	position	hashArray[hashIndex]	=	dummyItem;	return
temp;

}
//go	to	next	cell	++hashIndex;
//wrap	around	the	table	hashIndex	%=	SIZE;	}
return	NULL;	}
void	display(){	int	i	=	0;
for(i	=	0;	i<SIZE;	i++)	{

if(hashArray[i]	!=	NULL)
printf(”	(%d,%d)”,hashArray[i]->key,hashArray[i]->data);
else
printf(”	~~	“);
}

printf(“\n”);

}
int	main(){
dummyItem	=	(struct	DataItem*)	malloc(sizeof(struct	DataItem));	dummyItem->data	=	-1;
dummyItem->key	=	-1;

insert(1,	20);	insert(2,	70);	insert(42,	80);	insert(4,	25);	insert(12,	44);	insert(14,	32);
insert(17,	11);	insert(13,	78);	insert(37,	97);

display();
item	=	search(37);

if(item	!=	NULL){
printf(“Element	found:	%d\n”,	item->data);
}else	{
printf(“Element	not	found\n”);
}

delete(item);
item	=	search(37);

if(item	!=	NULL){
printf(“Element	found:	%d\n”,	item->data);
}else	{
printf(“Element	not	found\n”);
}
}
If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−

~~	(1,20)	(2,70)	(42,80)	(4,25)	~~	~~	~~	~~	~~	~~	~~	(12,44)	(13,78)	(14,32)	~~	~~
(17,11)	(37,97)	~~	
Element	found:	97



Element	not	found



Sorting	Techniques
20.	Sorting	AlgorithmData	Structures	&
Algorithms
Sorting	refers	to	arranging	data	in	a	particular	format.	Sorting	algorithm	specifies	the	way
to	arrange	data	in	a	particular	order.	Most	common	orders	are	in	numerical	or
lexicographical	order.

The	importance	of	sorting	lies	in	the	fact	that	data	searching	can	be	optimized	to	a	very
high	level,	if	data	is	stored	in	a	sorted	manner.	Sorting	is	also	used	to	represent	data	in
more	readable	formats.	Following	are	some	of	the	examples	of	sorting	in	real-life
scenarios:

Telephone	Directory	–	The	telephone	directory	stores	the	telephone	numbers	of	people
sorted	by	their	names,	so	that	the	names	can	be	searched	easily.
Dictionary	–	The	dictionary	stores	words	in	an	alphabetical	order	so	that	searching	of	any
word	becomes	easy.



In-placeSortingandNot-in-placeSorting

Sorting	algorithms	may	require	some	extra	space	for	comparison	and	temporary	storage	of
few	data	elements.	These	algorithms	do	not	require	any	extra	space	and	sorting	is	said	to
happen	in-place,	or	for	example,	within	the	array	itself.	This	is	called	in-place	sorting.
Bubble	sort	is	an	example	of	in-place	sorting.

However,	in	some	sorting	algorithms,	the	program	requires	space	which	is	more	than	or
equal	to	the	elements	being	sorted.	Sorting	which	uses	equal	or	more	space	is	called
notin-place	sorting.	Merge-sort	is	an	example	of	not-in-place	sorting.



StableandNotStableSorting

If	a	sorting	algorithm,	after	sorting	the	contents,	does	not	change	the	sequence	of	similar
content	in	which	they	appear,	it	is	called	stable	sorting.

If	a	sorting	algorithm,	after	sorting	the	contents,	changes	the	sequence	of	similar	content
in	which	they	appear,	it	is	called	unstable	sorting.

Stability	of	an	algorithm	matters	when
we	wish	to	maintain	the	sequence	of	original	elements,	like	in	a	tuple	for	example.



AdaptiveandNon-AdaptiveSortingAlgorithm

A	sorting	algorithm	is	said	to	be	adaptive,	if	it	takes	advantage	of	already	‘sorted’	elements
in	the	list	that	is	to	be	sorted.	That	is,	while	sorting	if	the	source	list	has	some	element
already	sorted,	adaptive	algorithms	will	take	this	into	account	and	will	try	not	to	re-order
them.

A	non-adaptive	algorithm	is	one	which	does	not	take	into	account	the	elements	which	are
already	sorted.	They	try	to	force	every	single	element	to	be	re-ordered	to	confirm	their
sortedness.



ImportantTerms

Some	terms	are	generally	coined	while	discussing	sorting	techniques,	here	is	a	brief
introduction	to	them	−

Increasing	Order

A	sequence	of	values	is	said	to	be	in	increasing	order,	if	the	successive	element	is	greater
than	the	previous	one.	For	example,	1,	3,	4,	6,	8,	9	are	in	increasing	order,	as	every	next
element	is	greater	than	the	previous	element.

Decreasing	Order

A	sequence	of	values	is	said	to	be	in	decreasing	order,	if	the	successive	element	is	less
than	the	current	one.	For	example,	9,	8,	6,	4,	3,	1	are	in	decreasing	order,	as	every	next
element	is	less	than	the	previous	element.

Non-Increasing	Order

A	sequence	of	values	is	said	to	be	in	non-increasing	order,	if	the	successive	element	is
less	than	or	equal	to	its	previous	element	in	the	sequence.	This	order	occurs	when	the
sequence	contains	duplicate	values.	For	example,	9,	8,	6,	3,	3,	1	are	in	non-increasing
order,	as	every	next	element	is	less	than	or	equal	to	(in	case	of	3)	but	not	greater	than	any
previous	element.

Non-Decreasing	Order

A	sequence	of	values	is	said	to	be	in	non-decreasing	order,	if	the	successive	element	is
greater	than	or	equal	to	its	previous	element	in	the	sequence.	This	order	occurs	when	the
sequence	contains	duplicate	values.	For	example,	1,	3,	3,	6,	8,	9	are	in	non-decreasing
order,	as	every	next	element	is	greater	than	or	equal	to	(in	case	of	3)	but	not	less	than	the
previous	one.



21.	Bubble	Sort	AlgorithmData	Structures
&	Algorithms
Bubble	sort	is	a	simple	sorting	algorithm.	This	sorting	algorithm	is	comparison-based
algorithm	in	which	each	pair	of	adjacent	elements	is	compared	and	the	elements	are
swapped	if	they	are	not	in	order.	This	algorithm	is	not	suitable	for	large	data	sets	as	its
average	and	worst	case	complexity	are	of	O(n2)	where	n	is	the	number	of	items.



HowBubbleSortWorks?

We	take	an	unsorted	array	for	our	example.	Bubble	sort	takes	Ο(n2)	time	so	we’re	keeping
it	short	and	precise.

Bubble	sort	starts	with	very	first	two	elements,	comparing
them	to	check	which	one	is	greater.

In	this	case,	value	33	is	greater	than	14,	so	it	is	already	in
sorted	locations.	Next,	we	compare	33	with	27.

We	find	that	27	is	smaller	than	33	and	these	two	values

must	be	swapped.	 The	new	array	should	look	like	this	−

Next	we	compare	33	and	35.	We	find	that	both	are	in
already	sorted	positions.

Then	we	move	to	the	next	two	values,	35	and	10.

We	know	then	that	10	is	smaller	35.	Hence	they	are	not
sorted.

We	swap	these	values.	We	find	that	we	have	reached	the	end	of	the	array.	After	one
iteration,	the	array	should	look	like	this	−

To	be	precise,	we	are	now	showing	how	an	array	should	look	like	after	each	iteration.
After	the	second	iteration,	it	should	look	like	this	−

Notice	that	after	each	iteration,	at	least	one	value	moves	at
the	end.

And	when	there’s	no	swap	required,	bubble	sorts	learns



that	an	array	is	completely	sorted.	 Now	we	should	look
into	some	practical	aspects	of	bubble	sort.

Algorithm

We	assume	list	is	an	array	of	n	elements.	We	further	assume	that	swap	function	swaps	the
values	of	the	given	array	elements.
begin	BubbleSort(list)
for	all	elements	of	list
if	list[i]	>	list[i+1]	swap(list[i],	list[i+1])	end	if
end	for
return	list	end	BubbleSort

Pseudocode

We	observe	in	algorithm	that	Bubble	Sort	compares	each	pair	of	array	element	unless	the
whole	array	is	completely	sorted	in	an	ascending	order.	This	may	cause	a	few	complexity
issues	like	what	if	the	array	needs	no	more	swapping	as	all	the	elements	are	already
ascending.

To	ease-out	the	issue,	we	use	one	flag	variable	swapped	which	will	help	us	see	if	any
swap	has	happened	or	not.	If	no	swap	has	occurred,	i.e.	the	array	requires	no	more
processing	to	be	sorted,	it	will	come	out	of	the	loop.

Pseudocode	of	BubbleSort	algorithm	can	be	written	as	follows	−
procedure	bubbleSort(	list	:	array	of	items	)
loop	=	list.count;
for	i	=	0	to	loop-1	do:	swapped	=	false
for	j	=	0	to	loop-1	do:

/*	compare	the	adjacent	elements	*/	if	list[j]	>	list[j+1]	then
/*	swap	them	*/
swap(	list[j],	list[j+1]	)
swapped	=	true	end	if

end	for
/*if	no	number	was	swapped	that	means	array	is	sorted	now,	break	the	loop.*/

if(not	swapped)	then	break
end	if

end	for	end	procedure	return	list

Implementation

One	more	issue	we	did	not	address	in	our	original	algorithm	and	its	improvised
pseudocode,	is	that,	after	every	iteration	the	highest	values	settles	down	at	the	end	of	the



array.	Hence,	the	next	iteration	need	not	include	already	sorted	elements.	For	this	purpose,
in	our	implementation,	we	restrict	the	inner	loop	to	avoid	already	sorted	values.

To	know	about	bubble	sort	implementation	in	C	programming	language,	please	click	here.



Bubble	SortProgram	in	C

We	shall	see	the	implementation	of	bubble	sort	in	C	programming	language	here.

Implementation	in	C

#include	<stdio.h>
#include	<stdbool.h>
#define	MAX	10
int	list[MAX]	=	{1,8,4,6,0,3,5,2,7,9};

void	display(){	int	i;
printf(“[“);	//	navigate	through	all	items	for(i	=	0;	i	<	MAX;	i++){

printf(“%d	“,list[i]);	}

printf(“]\n”);	}
void	bubbleSort()	{

int	temp;
int	i,j;
bool	swapped	=	false;
//	loop	through	all	numbers	for(i	=	0;	i	<	MAX-1;	i++)	{	swapped	=	false;
//	loop	through	numbers	falling	ahead	
for(j	=	0;	j	<	MAX-1-i;	j++)	{
printf(”	Items	compared:	[	%d,	%d	]	“,	list[j],list[j+1]);

//	check	if	next	number	is	lesser	than	current	no	//	swap	the	numbers.	
//	(Bubble	up	the	highest	number)

if(list[j]	>	list[j+1])	{	temp	=	list[j];
list[j]	=	list[j+1];	list[j+1]	=	temp;

swapped	=	true;
printf(”	=>	swapped	[%d,	%d]\n”,list[j],list[j+1]);

}else	{
printf(”	=>	not	swapped\n”);
}
}

//	if	no	number	was	swapped	that	means	//	array	is	sorted	now,	break	the	loop.
if(!swapped)	{

break;
}
printf(“Iteration	%d#:	“,(i+1));	display();
}
}

main(){
printf(“Input	Array:	“);	display();



printf(“\n”);

bubbleSort();
printf(“\nOutput	Array:	“);	display();

}
If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−

Input	Array:	[1	8	4	6	0	3	5	2	7	9	]
Items	compared:	[	1,	8	]	=>	not	swapped	Items	compared:	[	8,	4	]	=>	swapped	[4,	8]	Items
compared:	[	8,	6	]	=>	swapped	[6,	8]	Items	compared:	[	8,	0	]	=>	swapped	[0,	8]	Items
compared:	[	8,	3	]	=>	swapped	[3,	8]	Items	compared:	[	8,	5	]	=>	swapped	[5,	8]	Items
compared:	[	8,	2	]	=>	swapped	[2,	8]	Items	compared:	[	8,	7	]	=>	swapped	[7,	8]	Items
compared:	[	8,	9	]	=>	not	swapped

Iteration	1#:	[1	4	6	0	3	5	2	7	8	9	]
Items	compared:	[	1,	4	]	=>	not	swapped	Items	compared:	[	4,	6	]	=>	not	swapped	Items
compared:	[	6,	0	]	=>	swapped	[0,	6]	Items	compared:	[	6,	3	]	=>	swapped	[3,	6]	Items
compared:	[	6,	5	]	=>	swapped	[5,	6]	Items	compared:	[	6,	2	]	=>	swapped	[2,	6]	Items
compared:	[	6,	7	]	=>	not	swapped	Items	compared:	[	7,	8	]	=>	not	swapped

Iteration	2#:	[1	4	0	3	5	2	6	7	8	9	]
Items	compared:	[	1,	4	]	=>	not	swapped	Items	compared:	[	4,	0	]	=>	swapped	[0,	4]	Items
compared:	[	4,	3	]	=>	swapped	[3,	4]	Items	compared:	[	4,	5	]	=>	not	swapped	Items
compared:	[	5,	2	]	=>	swapped	[2,	5]	Items	compared:	[	5,	6	]	=>	not	swapped	Items
compared:	[	6,	7	]	=>	not	swapped

Iteration	3#:	[1	0	3	4	2	5	6	7	8	9	]
Items	compared:	[	1,	0	]	=>	swapped	[0,	1]	Items	compared:	[	1,	3	]	=>	not	swapped	Items
compared:	[	3,	4	]	=>	not	swapped	Items	compared:	[	4,	2	]	=>	swapped	[2,	4]	Items
compared:	[	4,	5	]	=>	not	swapped	Items	compared:	[	5,	6	]	=>	not	swapped

Iteration	4#:	[0	1	3	2	4	5	6	7	8	9	]
Items	compared:	[	0,	1	]	=>	not	swapped	Items	compared:	[	1,	3	]	=>	not	swapped	Items
compared:	[	3,	2	]	=>	swapped	[2,	3]	Items	compared:	[	3,	4	]	=>	not	swapped	Items
compared:	[	4,	5	]	=>	not	swapped

Iteration	5#:	[0	1	2	3	4	5	6	7	8	9	]
Items	compared:	[	0,	1	]	=>	not	swapped	Items	compared:	[	1,	2	]	=>	not	swapped	Items
compared:	[	2,	3	]	=>	not	swapped	Items	compared:	[	3,	4	]	=>	not	swapped

Output	Array:	[0	1	2	3	4	5	6	7	8	9	]



22.	Insertion	SortData	Structures	&
Algorithms
This	is	an	in-place	comparison-based	sorting	algorithm.	Here,	a	sub-list	is	maintained
which	is	always	sorted.	For	example,	the	lower	part	of	an	array	is	maintained	to	be	sorted.
An	element	which	is	to	be	‘insert’ed	in	this	sorted	sub-list,	has	to	find	its	appropriate	place
and	then	it	has	to	be	inserted	there.	Hence	the	name,	insertion	sort.

The	array	is	searched	sequentially	and	unsorted	items	are	moved	and	inserted	into	the
sorted	sub-list	(in	the	same	array).	This	algorithm	is	not	suitable	for	large	data	sets	as	its
average	and	worst	case	complexity	are	of	Ο(n2),	where	n	is	the	number	of	items.



HowInsertion	SortWorks?

We	take	an	unsorted	array	for	our	example.

Insertion	sort	compares	the	first	two
elements.

It	finds	that	both	14	and	33	are	already	in
ascending	order.	For	now,	14	is	in	sorted	sublist.

Insertion	sort	moves	ahead	and	compares
33	with	27.

And	finds	that	33	is	not	in	the	correct	position.

It	swaps	33	with	27.	It	also	checks	with	all	the	elements	of	sorted	sub-list.	Here	we	see
that	the	sorted	sub-list	has	only	one	element	14,	and	27	is	greater	than	14.	Hence,	the
sorted	sub-list	remains	sorted	after	swapping.

By	now	we	have	14	and	27	in	the	sorted
sub-list.	Next,	it	compares	33	with	10.

These	values	are	not	in	a	sorted	order.

So	we	swap	them.

However,	swapping	makes	27	and	10
unsorted.

Hence,	we	swap	them	too.

Again	we	find	14	and	10	in	an	unsorted
order.



We	swap	them	again.	By	the	end	of	third
iteration,	we	have	a	sorted	sub-list	of	4	items.

This	process	goes	on	until	all	the
unsorted	values	are	covered	in	a	sorted	sub-list.	Now	we	shall	see	some	programming
aspects	of	insertion	sort.

Algorithm

Now	we	have	a	bigger	picture	of	how	this	sorting	technique	works,	so	we	can	derive
simple	steps	by	which	we	can	achieve	insertion	sort.

Step	1	−	If	it	is	the	first	element,	it	is	already	sorted.	return	1;	Step	2	−	Pick	next	element
Step	3	−	Compare	with	all	elements	in	the	sorted	sub-list

Step	4	−	Shift	all	the	elements	in	the	sorted	sub-list	that	is	greater	than	the	value	to	be
sorted
Step	5	−	Insert	the	value
Step	6	−	Repeat	until	list	is	sorted

Pseudocode

procedure	insertionSort(	A	:	array	of	items	)
int	holePosition
int	valueToInsert

for	i	=	1	to	length(A)	inclusive	do:

/*	select	value	to	be	inserted	*/	valueToInsert	=	A[i]
holePosition	=	i
/*locate	hole	position	for	the	element	to	be	inserted	*/

while	holePosition	>	0	and	A[holePosition-1]	>	valueToInsert	do:	A[holePosition]	=
A[holePosition-1]
holePosition	=	holePosition	-1

end	while
/*	insert	the	number	at	hole	position	*/	A[holePosition]	=	valueToInsert
end	for
end	procedure
To	know	about	insertion	sort	implementation	in	C	programming	language,	please	click
here.



InsertionSortProgram	in	C

This	is	an	in-place	comparison-based	sorting	algorithm.	Here,	a	sub-list	is	maintained
which	is	always	sorted.	For	example,	the	lower	part	of	an	array	is	maintained	to	be	sorted.
An	element	which	is	to	be	‘insert’ed	in	this	sorted	sub-list,	has	to	find	its	appropriate	place
and	then	it	is	to	be	inserted	there.	Hence	the	name	insertion	sort.

Implementation	in	C

#include	<stdio.h>	#include	<stdbool.h>	#define	MAX	7

int	intArray[MAX]	=	{4,6,3,2,1,9,7};
void	printline(int	count){	int	i;

for(i	=	0;i	<count-1;i++){	printf(“=”);
}
printf(“=\n”);
}

void	display(){	int	i;
printf(“[“);

//	navigate	through	all	items	for(i	=	0;i<MAX;i++){
printf(“%d	“,intArray[i]);	}
printf(“]\n”);	}

void	insertionSort(){	int	valueToInsert;	int	holePosition;	int	i;

//	loop	through	all	numbers	for(i	=	1;	i	<	MAX;	i++){
//	select	a	value	to	be	inserted.	valueToInsert	=	intArray[i];
//	select	the	hole	position	where	number	is	to	be	inserted	holePosition	=	i;

//	check	if	previous	no.	is	larger	than	value	to	be	inserted	while	(holePosition	>	0	&&
intArray[holePosition-1]	>	valueToInsert){	intArray[holePosition]	=
intArray[holePosition-1];
holePosition—;
printf(”	item	moved	:	%d\n”	,	intArray[holePosition]);	}
if(holePosition	!=	i){

printf(”	item	inserted	:	%d,	at	position	:	%d\n”	,	valueToInsert,holePosition);
//	insert	the	number	at	hole	position	
intArray[holePosition]	=	valueToInsert;	}
printf(“Iteration	%d#:”,i);	display();
}	}

main(){
printf(“Input	Array:	“);
display();
printline(50);
insertionSort();
printf(“Output	Array:	“);



display();
printline(50);

}
If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−

Input	Array:	[4,	6,	3,	2,	1,	9,	7]
==================================================	iteration	1#:	[4,	6,
3,	2,	1,	9,	7]

item	moved	:6
item	moved	:4
item	inserted	:3,	at	position	:0

iteration	2#:	[3,	4,	6,	2,	1,	9,	7]
item	moved	:6
item	moved	:4
item	moved	:3
item	inserted	:2,	at	position	:0
iteration	3#:	[2,	3,	4,	6,	1,	9,	7]
item	moved	:6
item	moved	:4
item	moved	:3
item	moved	:2
item	inserted	:1,	at	position	:0
iteration	4#:	[1,	2,	3,	4,	6,	9,	7]
iteration	5#:	[1,	2,	3,	4,	6,	9,	7]
item	moved	:9
item	moved	:6
item	inserted	:7,	at	position	:4
iteration	6#:	[1,	2,	3,	4,	7,	6,	9]
Output	Array:	[1,	2,	3,	4,	7,	6,	9]
==================================================



23.	Selection	SortData	Structures	&
Algorithms
Selection	sort	is	a	simple	sorting	algorithm.	This	sorting	algorithm	is	an	in-place
comparison-based	algorithm	in	which	the	list	is	divided	into	two	parts,	the	sorted	part	at
the	left	end	and	the	unsorted	part	at	the	right	end.	Initially,	the	sorted	part	is	empty	and	the
unsorted	part	is	the	entire	list.

The	smallest	element	is	selected	from	the	unsorted	array	and	swapped	with	the	leftmost
element,	and	that	element	becomes	a	part	of	the	sorted	array.	This	process	continues
moving	unsorted	array	boundary	by	one	element	to	the	right.

This	algorithm	is	not	suitable	for	large	data	sets	as	its	average	and	worst	case	complexities
are	of	O(n2),	where	n	is	the	number	of	items.



HowSelectionSort	Works?

Consider	the	following	depicted	array	as	an	example.

For	the	first	position	in	the	sorted	list,	the	whole	list	is	scanned	sequentially.	The	first
position	where	14	is	stored	presently,	we	search	the	whole	list	and	find	that	10	is	the
lowest	value.

So	we	replace	14	with	10.	After	one
iteration	10,	which	happens	to	be	the	minimum	value	in	the	list,	appears	in	the	first
position	of	the	sorted	list.

For	the	second	position,	where	33	is
residing,	we	start	scanning	the	rest	of	the	list	in	a	linear	manner.

We	find	that	14	is	the	second	lowest
value	in	the	list	and	it	should	appear	at	the	second	place.	We	swap	these	values.

After	two	iterations,	two	least	values	are
positioned	at	the	beginning	in	a	sorted	manner.

The	same	process	is	applied	to	the	rest	of
the	items	in	the	array.	
Following	is	a	pictorial	depiction	of	the	entire	sorting	process	−



Now,	let	us	learn	some	programming
aspects	of	selection	sort.

Algorithm

Step	1	−	Set	MIN	to	location	0
Step	2	−	Search	the	minimum	element	in	the	list	Step	3	−	Swap	with	value	at	location
MIN	Step	4	−	Increment	MIN	to	point	to	next	element	Step	5	−	Repeat	until	list	is	sorted

Pseudocode

procedure	selection	sort	list	:	array	of	items	n	:	size	of	list

for	i	=	1	to	n	-	1
/*	set	current	element	as	minimum*/	min	=	i	
/*	check	the	element	to	be	minimum	*/
for	j	=	i+1	to	n	
if	list[j]	<	list[min]	then	min	=	j;
end	if



end	for
/*	swap	the	minimum	element	with	the	current	element*/	if	indexMin	!=	i	then
swap	list[min]	and	list[i]
end	if
end	for
end	procedure
To	know	about	selection	sort	implementation	in	C	programming	language,	please	click
here.



SelectionSortPrograminC

Selection	sort	is	a	simple	sorting	algorithm.	This	sorting	algorithm	is	an	in-place
comparison-based	algorithm	in	which	the	list	is	divided	into	two	parts,	the	sorted	part	at
the	left	end	and	the	unsorted	part	at	the	right	end.	Initially,	the	sorted	part	is	empty	and	the
unsorted	part	is	the	entire	list.

Implementation	in	C

#include	<stdio.h>	#include	<stdbool.h>	#define	MAX	7

int	intArray[MAX]	=	{4,6,3,2,1,9,7};
void	printline(int	count){	int	i;

for(i	=	0;i	<count-1;i++){	printf(“=”);
}

printf(“=\n”);	}

void	display(){	int	i;
printf(“[“);

//	navigate	through	all	items	for(i	=	0;i<MAX;i++){
printf(“%d	“,	intArray[i]);	}
printf(“]\n”);	}
void	selectionSort(){
int	indexMin,i,j;
//	loop	through	all	numbers	for(i	=	0;	i	<	MAX-1;	i++){
//	set	current	element	as	minimum	indexMin	=	i;
//	check	the	element	to	be	minimum	for(j	=	i+1;j<MAX;j++){
if(intArray[j]	<	intArray[indexMin]){	indexMin	=	j;
}
}
if(indexMin	!=	i){
printf(“Items	swapped:	[	%d,	%d	]\n”	,	intArray[i],	intArray[indexMin]);

//	swap	the	numbers	
int	temp	=	intArray[indexMin];	intArray[indexMin]	=	intArray[i];	intArray[i]	=	temp;

}
printf(“Iteration	%d#:”,(i+1));	display();
}

}
main(){
printf(“Input	Array:	“);	display();
printline(50);
selectionSort();
printf(“Output	Array:	“);	display();
printline(50);



}
If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−
Input	Array:	[4,	6,	3,	2,	1,	9,	7]
==================================================

Items	swapped:	[	4,	1	]
iteration	1#:	[1,	6,	3,	2,	4,	9,	7]
Items	swapped:	[	6,	2	]
iteration	2#:	[1,	2,	3,	6,	4,	9,	7]
iteration	3#:	[1,	2,	3,	6,	4,	9,	7]
Items	swapped:	[	6,	4	]
iteration	4#:	[1,	2,	3,	4,	6,	9,	7]
iteration	5#:	[1,	2,	3,	4,	6,	9,	7]
Items	swapped:	[	9,	7	]
iteration	6#:	[1,	2,	3,	4,	6,	7,	9]
Output	Array:	[1,	2,	3,	4,	6,	7,	9]
==================================================



24.	Merge	Sort	AlgorithmData	Structures
&	Algorithms
Merge	sort	is	a	sorting	technique	based	on	divide	and	conquer	technique.	With	worst-case
time	complexity	being	Ο(n	log	n),	it	is	one	of	the	most	respected	algorithms.	Merge	sort
first	divides	the	array	into	equal	halves	and	then	combines	them	in	a	sorted	manner.



HowMerge	SortWorks?

To	understand	merge	sort,	we	take	an	unsorted	array	as	the	following	−

We	know	that	merge	sort	first	divides	the	whole	array	iteratively	into	equal	halves	unless
the	atomic	values	are	achieved.	We	see	here	that	an	array	of	8	items	is	divided	into	two
arrays	of	size	4.

This	does	not	change	the	sequence	of
appearance	of	items	in	the	original.	Now	we	divide	these	two	arrays	into	halves.

We	further	divide	these	arrays
and	we	achieve	atomic	value	which	can	no	more	be	divided.

Now,	we	combine
them	in	exactly	the	same	manner	as	they	were	broken	down.	Please	note	the	color	codes
given	to	these	lists.

We	first	compare	the	element	for	each	list	and	then	combine	them	into	another	list	in	a
sorted	manner.	We	see	that	14	and	33	are	in	sorted	positions.	We	compare	27	and	10	and
in	the	target	list	of	2	values	we	put	10	first,	followed	by	27.	We	change	the	order	of	19	and
35	whereas	42	and	44	are	placed	sequentially.

In	the	next	iteration	of	the	combining	phase,	we	compare	lists	of	two	data	values,	and
merge	them	into	a	list	of	found	data	values	placing	all	in	a	sorted	order.

After	the	final	merging,	the	list	should
look	like	this	−

Now	we	should	learn	some	programming
aspects	of	merge	sorting.

Algorithm

Merge	sort	keeps	on	dividing	the	list	into	equal	halves	until	it	can	no	more	be	divided.	By
definition,	if	it	is	only	one	element	in	the	list,	it	is	sorted.	Then,	merge	sort	combines	the
smaller	sorted	lists	keeping	the	new	list	sorted	too.



Step	1	−	if	it	is	only	one	element	in	the	list	it	is	already	sorted,	return.	Step	2	−	divide	the
list	recursively	into	two	halves	until	it	can	no	more	be	divided.
Step	3	−	merge	the	smaller	lists	into	new	list	in	sorted	order.

Pseudocode

We	shall	now	see	the	pseudocodes	for	merge	sort	functions.	As	our	algorithms	point	out
two	main	functions	−	divide	&	merge.
Merge	sort	works	with	recursion	and	we	shall	see	our	implementation	in	the	same	way.
procedure	mergesort(	var	a	as	array	)
if	(	n	==	1	)	return	a

var	l1	as	array	=	a[0]	…	a[n/2]
var	l2	as	array	=	a[n/2+1]	…	a[n]
l1	=	mergesort(	l1	)
l2	=	mergesort(	l2	)

return	merge(	l1,	l2	)	end	procedure
procedure	merge(	var	a	as	array,	var	b	as	array	)
var	c	as	array

while	(	a	and	b	have	elements	)	if	(	a[0]	>	b[0]	)
add	b[0]	to	the	end	of	c	remove	b[0]	from	b

else
add	a[0]	to	the	end	of	c	remove	a[0]	from	a

end	if
end	while

while	(	a	has	elements	)	add	a[0]	to	the	end	of	c	remove	a[0]	from	a

end	while

while	(	b	has	elements	)	add	b[0]	to	the	end	of	c	remove	b[0]	from	b

end	while
return	c
end	procedure	To	know	about	merge	sort	implementation	in	C	programming	language,
please	click	here.



MergeSortPrograminC

Merge	sort	is	a	sorting	technique	based	on	divide	and	conquer	technique.	With	the
worstcase	time	complexity	being	Ο(n	log	n),	it	is	one	of	the	most	respected	algorithms.

Implementation	in	C

We	shall	see	the	implementation	of	merge	sort	in	C	programming	language	here	−
#include	<stdio.h>	#define	max	10
int	a[10]	=	{	10,	14,	19,	26,	27,	31,	33,	35,	42,	44	};	int	b[10];
void	merging(int	low,	int	mid,	int	high)	{	int	l1,	l2,	i;
for(l1	=	low,	l2	=	mid	+	1,	i	=	low;	l1	<=	mid	&&	l2	<=	high;	i++)	{	if(a[l1]	<=	a[l2])
b[i]	=	a[l1++];
else
b[i]	=	a[l2++];
}
while(l1	<=	mid)
b[i++]	=	a[l1++];
while(l2	<=	high)	b[i++]	=	a[l2++];
for(i	=	low;	i	<=	high;	i++)	a[i]	=	b[i];
}
void	sort(int	low,	int	high)	{	int	mid;

if(low	<	high)	{	mid	=	(low	+	high)	/	2;	sort(low,	mid);
sort(mid+1,	high);	merging(low,	mid,	high);

}else	{
return;
}
}

int	main()	{	int	i;
printf(“List	before	sorting\n”);
for(i	=	0;	i	<=	max;	i++)	printf(“%d	“,	a[i]);
sort(0,	max);
printf(“\nList	after	sorting\n”);
for(i	=	0;	i	<=	max;	i++)	printf(“%d	“,	a[i]);	}
If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−

List	before	sorting
10	14	19	26	27	31	33	35	42	44	0	List	after	sorting
0	10	14	19	26	27	31	33	35	42	44



25.	Shell	Sort	Data	Structures	&
Algorithms
Shell	sort	is	a	highly	efficient	sorting	algorithm	and	is	based	on	insertion	sort	algorithm.
This	algorithm	avoids	large	shifts	as	in	case	of	insertion	sort,	if	the	smaller	value	is	to	the
far	right	and	has	to	be	moved	to	the	far	left.

This	algorithm	uses	insertion	sort	on	a	widely	spread	elements,	first	to	sort	them	and	then
sorts	the	less	widely	spaced	elements.	This	spacing	is	termed	as	interval.	This	interval	is
calculated	based	on	Knuth’s	formula	as	−

h	=	h	*	3	+	1
where	−
h	is	interval	with	initial	value	1
This	algorithm	is	quite	efficient	for	medium-sized	data	sets	as	its	average	and	worst	case
complexity	are	of	O(n),	where	n	is	the	number	of	items.



HowShellSortWorks?

Let	us	consider	the	following	example	to	have	an	idea	of	how	shell	sort	works.	We	take
the	same	array	we	have	used	in	our	previous	examples.	For	our	example	and	ease	of
understanding,	we	take	the	interval	of	4.	Make	a	virtual	sub-list	of	all	values	located	at	the
interval	of	4	positions.	Here	these	values	are	{35,	14},	{33,	19},	{42,	27}	and	{10,	14}

We	compare	values	in	each	sub-list	and	swap	them	(if	necessary)	in	the	original	array.
After	this	step,	the	new	array	should	look	like	this	−

Then,	we	take	interval	of	2	and	this	gap
generates	two	sub-lists	-	{14,	27,	35,	42},	{19,	10,	33,	44}

We	compare	and	swap	the	values,	if
required,	in	the	original	array.	After	this	step,	the	array	should	look	like	this	−

Finally,	we	sort	the	rest	of	the	array	using
interval	of	value	1.	Shell	sort	uses	insertion	sort	to	sort	the	array.
Following	is	the	step-by-step	depiction	−



We	see	that	it	required	only	four	swaps	to
sort	the	rest	of	the	array.

Algorithm

Following	is	the	algorithm	for	shell	sort.

Step	1	−	Initialize	the	value	of	h
Step	2	−	Divide	the	list	into	smaller	sub-list	of	equal	interval	h	Step	3	−	Sort	these	sub-
lists	using	insertion	sort
Step	3	−	Repeat	until	complete	list	is	sorted

Pseudocode

Following	is	the	pseudocode	for	shell	sort.
procedure	shellSort()	A	:	array	of	items



/*	calculate	interval*/
while	interval	<	A.length	/3	do:	interval	=	interval	*	3	+	1	end	while
while	interval	>	0	do:
for	outer	=	interval;	outer	<	A.length;	outer	++	do:

/*	select	value	to	be	inserted	*/	valueToInsert	=	A[outer]
inner	=	outer;

/*shift	element	towards	right*/
while	inner	>	interval	-1	&&	A[inner	-	interval]	>=	valueToInsert	do:	A[inner]	=	A[inner	-
interval]
inner	=	inner	-	interval
end	while
/*	insert	the	number	at	hole	position	*/	A[inner]	=	valueToInsert

end	for
/*	calculate	interval*/	interval	=	(interval	-1)	/3;
end	while
end	procedure	To	know	about	shell	sort	implementation	in	C	programming	language,
please	click	here.



ShellSortPrograminC

Shell	sort	is	a	highly	efficient	sorting	algorithm	and	is	based	on	insertion	sort	algorithm.
This	algorithm	avoids	large	shifts	as	in	case	of	insertion	sort,	if	the	smaller	value	is	to	the
far	right	and	has	to	be	moved	to	the	far	left.

Implementation	in	C

#include	<stdio.h>	#include	<stdbool.h>	#define	MAX	7

int	intArray[MAX]	=	{4,6,3,2,1,9,7};
void	printline(int	count){	int	i;

for(i	=	0;i	<count-1;i++){	printf(“=”);
}

printf(“=\n”);

}
void	display(){	int	i;
printf(“[“);

//	navigate	through	all	items	for(i	=	0;i<MAX;i++){
printf(“%d	“,intArray[i]);	}
printf(“]\n”);	}

void	shellSort(){
int	inner,	outer;	int	valueToInsert;	int	interval	=	1;	int	elements	=	MAX;	int	i	=	0;

while(interval	<=	elements/3)	{	interval	=	interval*3	+1;
}

while(interval	>	0)	{
printf(“iteration	%d#:”,i);	display();

for(outer	=	interval;	outer	<	elements;	outer++)	{	valueToInsert	=	intArray[outer];
inner	=	outer;
while(inner	>	interval	-1	&&	intArray[inner	-	interval]

>=	valueToInsert)	{
intArray[inner]	=	intArray[inner	-	interval];	inner	-=interval;
printf(”	item	moved	:%d\n”,intArray[inner]);

}
intArray[inner]	=	valueToInsert;
printf(”	item	inserted	:%d,	at	position	:%d\n”,valueToInsert,inner);

}
interval	=	(interval	-1)	/3;	i++;
}
}

int	main()	{



printf(“Input	Array:	“);	display();
printline(50);
shellSort();
printf(“Output	Array:	“);	display();
printline(50);
return	1;

}
If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−

Input	Array:	[4,	6,	3,	2,	1,	9,	7]
==================================================	iteration	0#:	[4,	6,
3,	2,	1,	9,	7]

item	moved	:4
item	inserted	:1,	at	position	:0
item	inserted	:9,	at	position	:5
item	inserted	:7,	at	position	:6

iteration	1#:	[1,	6,	3,	2,	4,	9,	7]
item	inserted	:6,	at	position	:1
item	moved	:6
item	inserted	:3,	at	position	:1
item	moved	:6
item	moved	:3
item	inserted	:2,	at	position	:1
item	moved	:6
item	inserted	:4,	at	position	:3
item	inserted	:9,	at	position	:5
item	moved	:9
item	inserted	:7,	at	position	:5

Output	Array:	[1,	2,	3,	4,	6,	7,	9]
==================================================



26.	Quick	Sort	Data	Structures	&
Algorithms
Quick	sort	is	a	highly	efficient	sorting	algorithm	and	is	based	on	partitioning	of	array	of
data	into	smaller	arrays.	A	large	array	is	partitioned	into	two	arrays	one	of	which	holds
values	smaller	than	the	specified	value,	say	pivot,	based	on	which	the	partition	is	made
and	another	array	holds	values	greater	than	the	pivot	value.

Quick	sort	partitions	an	array	and	then	calls	itself	recursively	twice	to	sort	the	two
resulting	subarrays.	This	algorithm	is	quite	efficient	for	large-sized	data	sets	as	its	average
and	worst	case	complexity	are	of	O(nlogn),	where	n	is	the	number	of	items.



PartitioninQuickSort

Following	animated	representation	explains	how	to	find	the	pivot	value	in	an	array.

The	pivot	value
divides	the	list	into	two	parts.	And	recursively,	we	find	the	pivot	for	each	sub-lists	until	all
lists	contains	only	one	element.



QuickSortPivotAlgorithm

Based	on	our	understanding	of	partitioning	in	quick	sort,	we	will	now	try	to	write	an
algorithm	for	it,	which	is	as	follows.

Step	1	−	Choose	the	highest	index	value	has	pivot
Step	2	−	Take	two	variables	to	point	left	and	right	of	the	list	excluding	pivot	Step	3	−	left
points	to	the	low	index
Step	4	−	right	points	to	the	high
Step	5	−	while	value	at	left	is	less	than	pivot	move	right
Step	6	−	while	value	at	right	is	greater	than	pivot	move	left
Step	7	−	if	both	step	5	and	step	6	does	not	match	swap	left	and	right	Step	8	−	if	left	≥
right,	the	point	where	they	met	is	new	pivot



QuickSortPivotPseudocode

The	pseudocode	for	the	above	algorithm	can	be	derived	as	−

function	partitionFunc(left,	right,	pivot)	leftPointer	=	left	-1
rightPointer	=	right

while	True	do
while	A[++leftPointer]	<	pivot	do	//do-nothing	
end	while

while	rightPointer	>	0	&&	A[—rightPointer]	>	pivot	do	//do-nothing	
end	while

if	leftPointer	>=	rightPointer	break
else
swap	leftPointer,rightPointer
end	if

end	while
swap	leftPointer,right	return	leftPointer	end	function



QuickSortAlgorithm

Using	pivot	algorithm	recursively,	we	end	up	with	smaller	possible	partitions.	Each
partition	is	then	processed	for	quick	sort.	We	define	recursive	algorithm	for	quicksort	as
follows	−

Step	1	−	Make	the	right-most	index	value	pivot	Step	2	−	partition	the	array	using	pivot
value	Step	3	−	quicksort	left	partition	recursively	Step	4	−	quicksort	right	partition
recursively



QuickSortPseudocode

To	get	more	into	it,	let	see	the	pseudocode	for	quick	sort	algorithm	−
procedure	quickSort(left,	right)

if	right-left	<=	0
return
else
pivot	=	A[right]
partition	=	partitionFunc(left,	right,	pivot)	quickSort(left,partition-1)
quickSort(partition+1,right)
end	if

end	procedure	To	know	about	quick	sort	implementation	in	C	programming	language,
please	click	here.



QuickSortPrograminC

Quick	sort	is	a	highly	efficient	sorting	algorithm	and	is	based	on	partitioning	of	array	of
data	into	smaller	arrays.	A	large	array	is	partitioned	into	two	arrays	one	of	which	holds
values	smaller	than	the	specified	value,	say	pivot,	based	on	which	the	partition	is	made
and	another	array	holds	values	greater	than	the	pivot	value.

Implementation	in	C

#include	<stdio.h>	#include	<stdbool.h>	#define	MAX	7

int	intArray[MAX]	=	{4,6,3,2,1,9,7};
void	printline(int	count){	int	i;

for(i	=	0;i	<count-1;i++){	printf(“=”);
}

printf(“=\n”);	}

void	display(){	int	i;
printf(“[“);

//	navigate	through	all	items	for(i	=	0;i<MAX;i++){
printf(“%d	“,intArray[i]);	}
printf(“]\n”);	}

void	swap(int	num1,	int	num2){
int	temp	=	intArray[num1];
intArray[num1]	=	intArray[num2];
intArray[num2]	=	temp;

}
int	partition(int	left,	int	right,	int	pivot){	int	leftPointer	=	left	-1;
int	rightPointer	=	right;

while(true){

while(intArray[++leftPointer]	<	pivot){	//do	nothing
}

while(rightPointer	>	0	&&	intArray[—rightPointer]	>	pivot){	//do	nothing
}

if(leftPointer	>=	rightPointer){	break;
}else{
printf(”	item	swapped	:%d,%d\n”,	intArray[leftPointer],intArray[rightPointer]);
swap(leftPointer,rightPointer);
}

}

printf(”	pivot	swapped	:%d,%d\n”,	intArray[leftPointer],intArray[right]);
swap(leftPointer,right);



printf(“Updated	Array:	“);
display();
return	leftPointer;

}
void	quickSort(int	left,	int	right){
if(right-left	<=	0){
return;

}else	{
int	pivot	=	intArray[right];
int	partitionPoint	=	partition(left,	right,	pivot);	quickSort(left,partitionPoint-1);
quickSort(partitionPoint+1,right);

}
}

main(){
printf(“Input	Array:	“);	display();
printline(50);
quickSort(0,MAX-1);
printf(“Output	Array:	“);	display();
printline(50);

}

If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−	Input
Array:	[4	6	3	2	1	9	7	]
==================================================

pivot	swapped	:9,7
Updated	Array:	[4	6	3	2	1	7	9	]
pivot	swapped	:4,1
Updated	Array:	[1	6	3	2	4	7	9	]
item	swapped	:6,2
pivot	swapped	:6,4
Updated	Array:	[1	2	3	4	6	7	9	]
pivot	swapped	:3,3
Updated	Array:	[1	2	3	4	6	7	9	]
Output	Array:	[1	2	3	4	6	7	9	]
==================================================



Graph	Data	Structure
27.	Graphs	Data	Structures	&	Algorithms
A	graph	is	a	pictorial	representation	of	a	set	of	objects	where	some	pairs	of	objects	are
connected	by	links.	The	interconnected	objects	are	represented	by	points	termed	as
vertices,	and	the	links	that	connect	the	vertices	are	called	edges.

Formally,	a	graph	is	a	pair	of	sets	(V,	E),	where	V	is	the	set	of	vertices	and	E	is	the	set	of
edges,	connecting	the	pairs	of	vertices.	Take	a	look	at	the	following	graph	−

In	the	above	graph,
V	=	{a,	b,	c,	d,	e}
E	=	{ab,	ac,	bd,	cd,	de}



GraphDataStructure

Mathematical	graphs	can	be	represented	in	data	structure.	We	can	represent	a	graph	using
an	array	of	vertices	and	a	two-dimensional	array	of	edges.	Before	we	proceed	further,	let’s
familiarize	ourselves	with	some	important	terms	−

Vertex	−	Each	node	of	the	graph	is	represented	as	a	vertex.	In	the	following	example,	the
labeled	circle	represents	vertices.	Thus,	A	to	G	are	vertices.	We	can	represent	them	using
an	array	as	shown	in	the	following	image.	Here	A	can	be	identified	by	index	0.	B	can	be
identified	using	index	1	and	so	on.	Edge	−	Edge	represents	a	path	between	two	vertices	or
a	line	between	two	vertices.	In	the	following	example,	the	lines	from	A	to	B,	B	to	C,	and
so	on	represents	edges.	We	can	use	a	two-dimensional	array	to	represent	an	array	as	shown
in	the	following	image.	Here	AB	can	be	represented	as	1	at	row	0,	column	1,	BC	as	1	at
row	1,	column	2	and	so	on,	keeping	other	combinations	as	0.

Adjacency	−	Two	node	or	vertices	are	adjacent	if	they	are	connected	to	each	other
through	an	edge.	In	the	following	example,	B	is	adjacent	to	A,	C	is	adjacent	to	B,	and	so
on.

Path	−	Path	represents	a	sequence	of	edges	between	the	two	vertices.	In	the	following
example,	ABCD	represents	a	path	from	A	to	D.



Basic	Operations

Following	are	basic	primary	operations	of	a	Graph	which	are	following.
Add	Vertex	−	Adds	a	vertex	to	the	graph.
Add	Edge	−	Adds	an	edge	between	the	two	vertices	of	the	graph.
Display	Vertex	−	Displays	a	vertex	of	the	graph.
To	know	more	about	Graph,	please	read	Graph	Theory	Tutorial.	We	shall	learn	about
traversing	a	graph	in	the	coming	chapters.



28.	Depth	First	TraversalData	Structures	&
Algorithms
Depth	First	Search	(DFS)	algorithm	traverses	a	graph	in	a	depthward	motion	and	uses	a
stack	to	remember	to	get	the	next	vertex	to	start	a	search,	when	a	dead	end	occurs	in	any
iteration.

As	in	the	example	given	above,	DFS	algorithm
traverses	from	A	to	B	to	C	to	D	first	then	to	E,	then	to	F	and	lastly	to	G.	It	employs	the
following	rules.
Rule	1	−	Visit	the	adjacent	unvisited	vertex.	Mark	it	as	visited.	Display	it.	Push	it	in	a
stack.
Rule	2	−	If	no	adjacent	vertex	is	found,	pop	up	a	vertex	from	the	stack.	(It	will	pop	up	all
the	vertices	from	the	stack,	which	do	not	have	adjacent	vertices.)
Rule	3	−	Repeat	Rule	1	and	Rule	2	until	the	stack	is	empty.
Steps	Traversal	Description
1.

2.



3.

Initialize	the	stack.

Mark	S	as	visited	and	put	it	onto	the	stack.	Explore	any	unvisited	adjacent	node	from	S.
We	have	three	nodes	and	we	can	pick	any	of	them.	For	this	example,	we	shall	take	the
node	in	an	alphabetical	order.

Mark	A	as	visited	and	put	it	onto	the	stack.	Explore	any	unvisited	adjacent	node	from	A.
Both	S	and	D	are	adjacent	to	A	but	we	are	concerned	for	unvisited	nodes	only.

4.

5.

6.



7.

Visit	D	and	mark	it	as	visited	and	put	onto	the	stack.	Here,

we	have	B	and	C	nodes,	which	are	adjacent	to	D	and	both	are	unvisited.	However,	we

shall	again	choose	in	an	alphabetical	order.

We	choose	B,	mark	it	as	visited	and	put	onto	the	stack.	Here	B	does	not	have	any	unvisited
adjacent	node.	So,	we	pop	B	from	the	stack.

We	check	the	stack	top	for	return	to	the	previous	node	and	check	if	it	has	any	unvisited
nodes.	Here,	we	find	D	to	be	on	the	top	of	the	stack.

Only	unvisited	adjacent	node	is	from	D	is	C	now.	So	we
visit	C,	mark	it	as	visited	and	put	it	onto	the	stack.

As	C	does	not	have	any	unvisited	adjacent	node	so	we	keep	popping	the	stack	until	we
find	a	node	that	has	an	unvisited	adjacent	node.	In	this	case,	there’s	none	and	we	keep
popping	until	the	stack	is	empty.

To	know	about	the	implementation	of	this	algorithm	in	C	programming	language,	click
here.



Depth	FirstTraversal	in	C

We	shall	not	see	the	implementation	of	Depth	First	Traversal	(or	Depth	First	Search)	in	C
programming	language.	For	our	reference	purpose,	we	shall	follow	our	example	and	take
this	as	our	graph	model	−

Implementation	in	C

#include	<stdio.h>
#include	<stdlib.h>
#include	<stdbool.h>

#define	MAX	5

struct	Vertex	{
char	label;
bool	visited;

};
//stack	variables
int	stack[MAX];	int	top	=	-1;
//graph	variables
//array	of	vertices
struct	Vertex*	lstVertices[MAX];
//adjacency	matrix
int	adjMatrix[MAX][MAX];
//vertex	count
int	vertexCount	=	0;
//stack	functions

void	push(int	item)	{	stack[++top]	=	item;
}

int	pop()	{
return	stack[top—];
}

int	peek()	{
return	stack[top];
}



bool	isStackEmpty()	{	return	top	==	-1;
}
//graph	functions

//add	vertex	to	the	vertex	list
void	addVertex(char	label)	{
struct	Vertex*	vertex	=	(struct	Vertex*)	malloc(sizeof(struct	Vertex));
vertex->label	=	label;
vertex->visited	=	false;
lstVertices[vertexCount++]	=	vertex;
}

//add	edge	to	edge	array
void	addEdge(int	start,int	end)	{	adjMatrix[start][end]	=	1;	adjMatrix[end][start]	=	1;

}
//display	the	vertex
void	displayVertex(int	vertexIndex)	{
printf(“%c	“,lstVertices[vertexIndex]->label);	}
//get	the	adjacent	unvisited	vertex
int	getAdjUnvisitedVertex(int	vertexIndex)	{	int	i;
for(i	=	0;	i<vertexCount;	i++)	{
if(adjMatrix[vertexIndex][i]	==	1	&&	lstVertices[i]->visited	==	false)	{	return	i;
}
}
return	-1;	}
void	depthFirstSearch()	{	int	i;
//mark	first	node	as	visited	lstVertices[0]->visited	=	true;
//display	the	vertex	displayVertex(0);
//push	vertex	index	in	stack	push(0);

while(!isStackEmpty())	{
//get	the	unvisited	vertex	of	vertex	which	is	at	top	of	the	stack	int	unvisitedVertex	=
getAdjUnvisitedVertex(peek());

//no	adjacent	vertex	found
if(unvisitedVertex	==	-1)	{
pop();

}else	{
lstVertices[unvisitedVertex]->visited	=	true;	displayVertex(unvisitedVertex);
push(unvisitedVertex);

}
}
//stack	is	empty,	search	is	complete,	reset	the	visited	flag	for(i	=	0;i	<	vertexCount;i++)	{
lstVertices[i]->visited	=	false;
}
}
int	main()	{	int	i,	j;	for(i	=	0;	i<MAX;	i++)	//	set	adjacency	{	for(j	=	0;	j<MAX;	j++)	//



matrix	to	0	adjMatrix[i][j]	=	0;
}

addVertex(‘S’);	//	0
addVertex(‘A’);	//	1
addVertex(‘B’);	//	2
addVertex(‘C’);	//	3
addVertex(‘D’);	//	4

addEdge(0,	1);	//	S	-	A	addEdge(0,	2);	//	S	-	B	addEdge(0,	3);	//	S	-	C	addEdge(1,	4);	//	A	-
D	addEdge(2,	4);	//	B	-	D	addEdge(3,	4);	//	C	-	D

printf(“Depth	First	Search:	“);
depthFirstSearch();
return	0;	}
If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−	Depth
First	Search:	S	A	D	B	C



29.	Breadth	First	TraversalData	Structures
&	Algorithms
Breadth	First	Search	(BFS)	algorithm	traverses	a	graph	in	a	breadthward	motion	and	uses
a	queue	to	remember	to	get	the	next	vertex	to	start	a	search,	when	a	dead	end	occurs	in
any	iteration.

As	in	the	example	given	above,	BFS	algorithm
traverses	from	A	to	B	to	E	to	F	first	then	to	C	and	G	lastly	to	D.	It	employs	the	following
rules.
Rule	1	−	Visit	the	adjacent	unvisited	vertex.	Mark	it	as	visited.	Display	it.	Insert	it	in	a
queue.
Rule	2	−	If	no	adjacent	vertex	is	found,	remove	the	first	vertex	from	the	queue.
Rule	3	−	Repeat	Rule	1	and	Rule	2	until	the	queue	is	empty.
Steps	Traversal	Description
1.

2.



3.

4.

Initialize	the	queue.

We	start	from	visiting	S	(starting	node),	and	mark	it	as	visited.

We	then	see	an	unvisited	adjacent	node	from	S.	In	this	example,	we	have	three	nodes	but
alphabetically	we	choose	A,	mark	it	as	visited	and	enqueue	it.

Next,	the	unvisited	adjacent	node	from	S	is	B.	We	mark	it	as	visited	and	enqueue	it.	5.

6.



7.

Next,	the	unvisited	adjacent	node	from	S	is	C.	We	mark	it	as	visited	and	enqueue	it.

Now,	S	is	left	with	no	unvisited	adjacent	nodes.	So,	we	dequeue	and	find	A.

From	A	we	have	D	as	unvisited	adjacent	node.	We
mark	it	as	visited	and	enqueue	it.

At	this	stage,	we	are	left	with	no	unmarked	(unvisited)	nodes.	But	as	per	the	algorithm	we
keep	on	dequeuing	in	order	to	get	all	unvisited	nodes.	When	the	queue	gets	emptied,	the
program	is	over.

The	implementation	of	this	algorithm	in	C	programming	language	can	be	seen	here.



Breadth	First	Traversal	inC

We	shall	not	see	the	implementation	of	Breadth	First	Traversal	(or	Breadth	First	Search)	in
C	programming	language.	For	our	reference	purpose,	we	shall	follow	our	example	and
take	this	as	our	graph	model	−

Implementation	in	C

#include	<stdio.h>
#include	<stdlib.h>
#include	<stdbool.h>

#define	MAX	5

struct	Vertex	{
char	label;
bool	visited;

};
//queue	variables

int	queue[MAX];
int	rear	=	-1;
int	front	=	0;
int	queueItemCount	=	0;

//graph	variables
//array	of	vertices
struct	Vertex*	lstVertices[MAX];

//adjacency	matrix
int	adjMatrix[MAX][MAX];
//vertex	count
int	vertexCount	=	0;
//queue	functions

void	insert(int	data)	{	queue[++rear]	=	data;	queueItemCount++;

}

int	removeData()	{
queueItemCount—;	return	queue[front++];



}

bool	isQueueEmpty()	{
return	queueItemCount	==	0;
}

//graph	functions

//add	vertex	to	the	vertex	list
void	addVertex(char	label)	{
struct	Vertex*	vertex	=	(struct	Vertex*)	malloc(sizeof(struct	Vertex));
vertex->label	=	label;
vertex->visited	=	false;
lstVertices[vertexCount++]	=	vertex;
}
//add	edge	to	edge	array
void	addEdge(int	start,int	end)	{
adjMatrix[start][end]	=	1;
adjMatrix[end][start]	=	1;	}

//display	the	vertex
void	displayVertex(int	vertexIndex)	{
printf(“%c	“,lstVertices[vertexIndex]->label);	}
//get	the	adjacent	unvisited	vertex
int	getAdjUnvisitedVertex(int	vertexIndex)	{	int	i;
for(i	=	0;	i<vertexCount;	i++)	{
if(adjMatrix[vertexIndex][i]	==	1	&&	lstVertices[i]->visited	==	false)	return	i;
}
return	-1;	}
void	breadthFirstSearch()	{	int	i;
//mark	first	node	as	visited	lstVertices[0]->visited	=	true;

//display	the	vertex	displayVertex(0);	//insert	vertex	index	in	queue	insert(0);
int	unvisitedVertex;

while(!isQueueEmpty())	{
//get	the	unvisited	vertex	of	vertex	which	is	at	front	of	the	queue	int	tempVertex	=
removeData();

//no	adjacent	vertex	found
while((unvisitedVertex	=	getAdjUnvisitedVertex(tempVertex))	!=	-1)	{
lstVertices[unvisitedVertex]->visited	=	true;
displayVertex(unvisitedVertex);
insert(unvisitedVertex);
}

}
//queue	is	empty,	search	is	complete,	reset	the	visited	flag	for(i	=	0;i<vertexCount;i++)	{
lstVertices[i]->visited	=	false;
}
}



int	main()	{	int	i,	j;
for(i	=	0;	i<MAX;	i++)	//	set	adjacency	{	for(j	=	0;	j<MAX;	j++)	//	matrix	to	0
adjMatrix[i][j]	=	0;
}

addVertex(‘S’);	//	0
addVertex(‘A’);	//	1
addVertex(‘B’);	//	2
addVertex(‘C’);	//	3
addVertex(‘D’);	//	4
addEdge(0,	1);	//	S	-	A	addEdge(0,	2);	//	S	-	B	addEdge(0,	3);	//	S	-	C	addEdge(1,	4);	//	A	-
D	addEdge(2,	4);	//	B	-	D	addEdge(3,	4);	//	C	-	D

printf(“\nBreadth	First	Search:	“);
breadthFirstSearch();
return	0;	}
If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−	Breadth
First	Search:	S	A	B	C	D



Tree	Data	Structure
30.	Tree	Data	Structures	&	Algorithms
Tree	represents	the	nodes	connected	by	edges.	We	will	discuss	binary	tree	or	binary	search
tree	specifically.

Binary	Tree	is	a	special	datastructure	used	for	data	storage	purposes.	A	binary	tree	has	a
special	condition	that	each	node	can	have	a	maximum	of	two	children.	A	binary	tree	has
the	benefits	of	both	an	ordered	array	and	a	linked	list	as	search	is	as	quick	as	in	a	sorted
array	and	insertion	or	deletion	operation	are	as	fast	as	in	linked	list.



Important	Terms

Following	are	the	important	terms	with	respect	to	tree.
Path	−	Path	refers	to	the	sequence	of	nodes	along	the	edges	of	a	tree.
Root	–	The	node	at	the	top	of	the	tree	is	called	root.	There	is	only	one	root	per	tree	and
one	path	from	the	root	node	to	any	node.
Parent	−	Any	node	except	the	root	node	has	one	edge	upward	to	a	node	called	parent.
Child	–	The	node	below	a	given	node	connected	by	its	edge	downward	is	called	its	child
node.
Leaf	–	The	node	which	does	not	have	any	child	node	is	called	the	leaf	node.

Subtree	−	Subtree	represents	the	descendants	of	a	node.
Visiting	−	Visiting	refers	to	checking	the	value	of	a	node	when	control	is	on	the	node.

Traversing	−	Traversing	means	passing	through	nodes	in	a	specific	order.

Levels	−	Level	of	a	node	represents	the	generation	of	a	node.	If	the	root	node	is	at	level	0,
then	its	next	child	node	is	at	level	1,	its	grandchild	is	at	level	2,	and	so	on.

Keys	−	Key	represents	a	value	of	a	node	based	on	which	a	search	operation	is	to	be
carried	out	for	a	node.



Binary	Search	Tree	Representation

Binary	Search	tree	exhibits	a	special	behavior.	A	node’s	left	child	must	have	a	value	less
than	its	parent’s	value	and	the	node’s	right	child	must	have	a	value	greater	than	its	parent
value.

We’re	going	to	implement	tree	using	node
object	and	connecting	them	through	references.



TreeNode

The	code	to	write	a	tree	node	would	be	similar	to	what	is	given	below.	It	has	a	data	part
and	references	to	its	left	and	right	child	nodes.

struct	node	{
int	data;
struct	node	*leftChild;
struct	node	*rightChild;

};
In	a	tree,	all	nodes	share	common	construct.



BST	Basic	Operations

The	basic	operations	that	can	be	performed	on	a	binary	search	tree	data	structure,	are	the
following	−
Insert	−	Inserts	an	element	in	a	tree/create	a	tree.
Search	−	Searches	an	element	in	a	tree.
Pre-order	Traversal	−	Traverses	a	tree	in	a	pre-order	manner.
In-order	Traversal	−	Traverses	a	tree	in	an	in-order	manner.
Post-order	Traversal	−	Traverses	a	tree	in	a	post-order	manner.
We	shall	learn	creating	(inserting	into)	a	tree	structure	and	searching	a	data	item	in	a	tree
in	this	chapter.	We	shall	learn	about	tree	traversing	methods	in	the	coming	chapter.



Insert	Operation

The	very	first	insertion	creates	the	tree.	Afterwards,	whenever	an	element	is	to	be	inserted,
first	locate	its	proper	location.	Start	searching	from	the	root	node,	then	if	the	data	is	less
than	the	key	value,	search	for	the	empty	location	in	the	left	subtree	and	insert	the	data.
Otherwise,	search	for	the	empty	location	in	the	right	subtree	and	insert	the	data.

Algorithm

If	root	is	NULL	
then	create	root	node
return

If	root	exists	then
compare	the	data	with	node.data
while	until	insertion	position	is	located

If	data	is	greater	than	node.data	goto	right	subtree
else
goto	left	subtree

endwhile	insert	data	end	If

Implementation

The	implementation	of	insert	function	should	look	like	this	−

void	insert(int	data)	{
struct	node	*tempNode	=	(struct	node*)	malloc(sizeof(struct	node));	struct	node	*current;
struct	node	*parent;

tempNode->data	=	data;
tempNode->leftChild	=	NULL;	tempNode->rightChild	=	NULL;

//if	tree	is	empty,	create	root	node	if(root	==	NULL)	{
root	=	tempNode;

}else	{
current	=	root;
parent	=	NULL;

while(1)	{
parent	=	current;
//go	to	left	of	the	tree
if(data	<	parent->data)	{
current	=	current->leftChild;

//insert	to	the	left
if(current	==	NULL)	{
parent->leftChild	=	tempNode;



return;
}
}
//go	to	right	of	the	tree
else	{
current	=	current->rightChild;

//insert	to	the	right
if(current	==	NULL)	{
parent->rightChild	=	tempNode;
return;
}
}
}
}
}



SearchOperation

Whenever	an	element	is	to	be	searched,	start	searching	from	the	root	node,	then	if	the	data
is	less	than	the	key	value,	search	for	the	element	in	the	left	subtree.	Otherwise,	search	for
the	element	in	the	right	subtree.	Follow	the	same	algorithm	for	each	node.

Algorithm

If	root.data	is	equal	to	search.data	return	root
else
while	data	not	found

If	data	is	greater	than	node.data	goto	right	subtree
else
goto	left	subtree

If	data	found	return	node
endwhile	
return	data	not	found	end	if
The	implementation	of	this	algorithm	should	look	like	this.

struct	node*	search(int	data)	{	struct	node	*current	=	root;	printf(“Visiting	elements:	“);

while(current->data	!=	data)	{	if(current	!=	NULL)
printf(“%d	“,current->data);

//go	to	left	tree

if(current->data	>	data)	{
current	=	current->leftChild;
}
//else	go	to	right	tree
else	{
current	=	current->rightChild;
}

//not	found
if(current	==	NULL)	{	return	NULL;
}
return	current;	}
}
To	know	about	the	implementation	of	binary	search	tree	data	structure,	please	click	here.



Tree	Traversal	in	C

Traversal	is	a	process	to	visit	all	the	nodes	of	a	tree	and	may	print	their	values	too.
Because,	all	nodes	are	connected	via	edges	(links)	we	always	start	from	the	root	(head)
node.	That	is,	we	cannot	random	access	a	node	in	a	tree.	There	are	three	ways	which	we
use	to	traverse	a	tree	−

In-order	Traversal	Pre-order	Traversal	Post-order	Traversal

We	shall	now	look	at	the	implementation	of	tree	traversal	in	C	programming	language
here	using	the	following	binary	tree	−

Implementation	in	C

#include	<stdio.h>
#include	<stdlib.h>
struct	node	{
int	data;
struct	node	*leftChild;
struct	node	*rightChild;
};
struct	node	*root	=	NULL;

void	insert(int	data)	{
struct	node	*tempNode	=	(struct	node*)	malloc(sizeof(struct	node));	struct	node	*current;
struct	node	*parent;
tempNode->data	=	data;
tempNode->leftChild	=	NULL;	tempNode->rightChild	=	NULL;

//if	tree	is	empty	if(root	==	NULL)	{	root	=	tempNode;

}else	{
current	=	root;	parent	=	NULL;

while(1)	{
parent	=	current;
//go	to	left	of	the	tree
if(data	<	parent->data)	{
current	=	current->leftChild;

//insert	to	the	left
if(current	==	NULL)	{



parent->leftChild	=	tempNode;
return;
}
}//go	to	right	of	the	tree
else	{
current	=	current->rightChild;

//insert	to	the	right
if(current	==	NULL)	{
parent->rightChild	=	tempNode;
return;
}
}
}
}
}
struct	node*	search(int	data)	{
struct	node	*current	=	root;	printf(“Visiting	elements:	“);

while(current->data	!=	data)	{	if(current	!=	NULL)
printf(“%d	“,current->data);	//go	to	left	tree
if(current->data	>	data)	{
current	=	current->leftChild;

}
//else	go	to	right	tree
else	{

current	=	current->rightChild;	}
//not	found
if(current	==	NULL)	{	return	NULL;
}
}
return	current;	}

void	pre_order_traversal(struct	node*	root)	{	if(root	!=	NULL)	{
printf(“%d	“,root->data);
pre_order_traversal(root->leftChild);	pre_order_traversal(root->rightChild);

}
}

void	inorder_traversal(struct	node*	root)	{	if(root	!=	NULL)	{
inorder_traversal(root->leftChild);	printf(“%d	“,root->data);
inorder_traversal(root->rightChild);

}
}

void	post_order_traversal(struct	node*	root)	{	if(root	!=	NULL)	{
post_order_traversal(root->leftChild);	post_order_traversal(root->rightChild);	printf(“%d



“,	root->data);

}
}

int	main()	{
int	i;
int	array[7]	=	{	27,	14,	35,	10,	19,	31,	42	};

for(i	=	0;	i	<	7;	i++)
insert(array[i]);
i	=	31;
struct	node	*	temp	=	search(i);

if(temp	!=	NULL)	{
printf(“[%d]	Element	found.”,	temp->data);	printf(“\n”);

}else	{
printf(“[	x	]	Element	not	found	(%d).\n”,	i);
}

i	=	15;
temp	=	search(i);

if(temp	!=	NULL)	{
printf(“[%d]	Element	found.”,	temp->data);	printf(“\n”);

}else	{
printf(“[	x	]	Element	not	found	(%d).\n”,	i);
}

printf(“\nPreorder	traversal:	“);	pre_order_traversal(root);
printf(“\nInorder	traversal:	“);	inorder_traversal(root);
printf(“\nPost	order	traversal:	“);	post_order_traversal(root);
return	0;	}
If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−
Visiting	elements:	27	->	35	->	[31]	Element	found.
Visiting	elements:	27	->	14	->	19	->	[	x	]	Element	not	found	(15).

Preorder	traversal:	27	14	10	19	35	31	42	Inorder	traversal:	10	14	19	27	31	35	42	Post
order	traversal:	10	19	14	31	42	35	27



31.	Tree	TraversalData	Structures	&
Algorithms
Traversal	is	a	process	to	visit	all	the	nodes	of	a	tree	and	may	print	their	values	too.
Because,	all	nodes	are	connected	via	edges	(links)	we	always	start	from	the	root	(head)
node.	That	is,	we	cannot	randomly	access	a	node	in	a	tree.	There	are	three	ways	which	we
use	to	traverse	a	tree	−

In-order	Traversal
Pre-order	Traversal
Post-order	Traversal

Generally,	we	traverse	a	tree	to	search	or	locate	a	given	item	or	key	in	the	tree	or	to	print
all	the	values	it	contains.



In-orderTraversal

In	this	traversal	method,	the	left	subtree	is	visited	first,	then	the	root	and	later	the	right
sub-tree.	We	should	always	remember	that	every	node	may	represent	a	subtree	itself.

If	a	binary	tree	is	traversed	in-order,	the	output	will	produce	sorted	key	values	in	an
ascending	order.

We	start	from	A,	and	following	in-order	traversal,	we	move	to	its	left	subtree	B.	B	is	also
traversed	in-order.	The	process	goes	on	until	all	the	nodes	are	visited.	The	output	of
inorder	traversal	of	this	tree	will	be	−

D	→	B	→	E	→	A	→	F	→	C	→	G
Algorithm

Until	all	nodes	are	traversed	−
Step	1	−	Recursively	traverse	left	subtree.	Step	2	−	Visit	root	node.
Step	3	−	Recursively	traverse	right	subtree.



Pre-orderTraversal

In	this	traversal	method,	the	root	node	is	visited	first,	then	the	left	subtree	and	finally	the
right	subtree.

We	start	from	A,	and	following	pre-order	traversal,	we	first	visit	A	itself	and	then	move	to
its	left	subtree	B.	B	is	also	traversed	pre-order.	The	process	goes	on	until	all	the	nodes	are
visited.	The	output	of	preorder	traversal	of	this	tree	will	be	−

A	→	B	→	D	→	E	→	C	→	F	→	G

Until	all	nodes	are	traversed	−
Step	1	−	Visit	root	node.
Step	2	−	Recursively	traverse	left	subtree.	Step	3	−	Recursively	traverse	right	subtree.



Post-orderTraversal

In	this	traversal	method,	the	root	node	is	visited	last,	hence	the	name.	First	we	traverse	the
left	subtree,	then	the	right	subtree	and	finally	the	root	node.

We	start	from	A,	and	following	pre-order	traversal,	we	first	visit	the	left	subtree	B.	B	is
also	traversed	post-order.	The	process	goes	on	until	all	the	nodes	are	visited.	The	output	of
postorder	traversal	of	this	tree	will	be	−

D	→	E	→	B	→	F	→	G	→	C	→	A

Until	all	nodes	are	traversed	−
Step	1	−	Recursively	traverse	left	subtree.	Step	2	−	Recursively	traverse	right	subtree.
Step	3	−	Visit	root	node.

To	check	the	C	implementation	of	tree	traversing,	please	click	here



Tree	Traversal	in	C

Traversal	is	a	process	to	visit	all	the	nodes	of	a	tree	and	may	print	their	values	too.
Because,	all	nodes	are	connected	via	edges	(links)	we	always	start	from	the	root	(head)
node.	That	is,	we	cannot	randomly	access	a	node	in	a	tree.	There	are	three	ways	which	we
use	to	traverse	a	tree	−

In-order	Traversal	Pre-order	Traversal	Post-order	Traversal

We	shall	now	see	the	implementation	of	tree	traversal	in	C	programming	language	here
using	the	following	binary	tree	−

Implementation	in	C

#include	<stdio.h>	#include	<stdlib.h>
struct	node	{	int	data;
struct	node	*leftChild;	struct	node	*rightChild;	};
struct	node	*root	=	NULL;

void	insert(int	data)	{
struct	node	*tempNode	=	(struct	node*)	malloc(sizeof(struct	node));	struct	node	*current;
struct	node	*parent;

tempNode->data	=	data;
tempNode->leftChild	=	NULL;	tempNode->rightChild	=	NULL;

//if	tree	is	empty	if(root	==	NULL)	{	root	=	tempNode;

}else	{
current	=	root;	parent	=	NULL;

while(1)	{
parent	=	current;
//go	to	left	of	the	tree
if(data	<	parent->data)	{
current	=	current->leftChild;

//insert	to	the	left	if(current	==	NULL)	{
parent->leftChild	=	tempNode;	return;

}
}//go	to	right	of	the	tree
else	{



current	=	current->rightChild;

//insert	to	the	right
if(current	==	NULL)	{
parent->rightChild	=	tempNode;
return;
}
}
}
}
}

struct	node*	search(int	data)	{	struct	node	*current	=	root;	printf(“Visiting	elements:	“);

while(current->data	!=	data)	{	if(current	!=	NULL)
printf(“%d	“,current->data);	//go	to	left	tree
if(current->data	>	data)	{
current	=	current->leftChild;

}
//else	go	to	right	tree
else	{

current	=	current->rightChild;	}
//not	found
if(current	==	NULL)	{	return	NULL;

}
}
return	current;

}

void	pre_order_traversal(struct	node*	root)	{	if(root	!=	NULL)	{
printf(“%d	“,root->data);
pre_order_traversal(root->leftChild);	pre_order_traversal(root->rightChild);

}
}

void	inorder_traversal(struct	node*	root)	{	if(root	!=	NULL)	{
inorder_traversal(root->leftChild);	printf(“%d	“,root->data);
inorder_traversal(root->rightChild);

}
}

void	post_order_traversal(struct	node*	root)	{	if(root	!=	NULL)	{
post_order_traversal(root->leftChild);	post_order_traversal(root->rightChild);	printf(“%d
“,	root->data);

}
}



int	main()	{	int	i;
int	array[7]	=	{	27,	14,	35,	10,	19,	31,	42	};

for(i	=	0;	i	<	7;	i++)
insert(array[i]);
i	=	31;
struct	node	*	temp	=	search(i);

if(temp	!=	NULL)	{
printf(“[%d]	Element	found.”,	temp->data);	printf(“\n”);

}else	{
printf(“[	x	]	Element	not	found	(%d).\n”,	i);
}

i	=	15;
temp	=	search(i);

if(temp	!=	NULL)	{
printf(“[%d]	Element	found.”,	temp->data);	printf(“\n”);

}else	{
printf(“[	x	]	Element	not	found	(%d).\n”,	i);
}

printf(“\nPreorder	traversal:	“);	pre_order_traversal(root);
printf(“\nInorder	traversal:	“);	inorder_traversal(root);

printf(“\nPost	order	traversal:	“);	post_order_traversal(root);
return	0;

}
If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−
Visiting	elements:	27	->	35	->	[31]	Element	found.
Visiting	elements:	27	->	14	->	19	->	[	x	]	Element	not	found	(15).

Preorder	traversal:	27	14	10	19	35	31	42	Inorder	traversal:	10	14	19	27	31	35	42	Post
order	traversal:	10	19	14	31	42	35	27



32.	Binary	Search	TreeData	Structures	&
Algorithms
A	Binary	Search	Tree	(BST)	is	a	tree	in	which	all	the	nodes	follow	the	below-mentioned
properties	−
The	left	sub-tree	of	a	node	has	a	key	less	than	or	equal	to	its	parent	node’s	key.
The	right	sub-tree	of	a	node	has	a	key	greater	than	or	equal	to	its	parent	node’s	key.
Thus,	BST	divides	all	its	sub-trees	into	two	segments;	the	left	sub-tree	and	the	right
subtree	and	can	be	defined	as	−
left_subtree	(keys)	≤	node	(key)	≤	right_subtree	(keys)



Representation

BST	is	a	collection	of	nodes	arranged	in	a	way	where	they	maintain	BST	properties.	Each
node	has	a	key	and	an	associated	value.	While	searching,	the	desired	key	is	compared	to
the	keys	in	BST	and	if	found,	the	associated	value	is	retrieved.

Following	is	a	pictorial	representation	of	BST	−

We	observe	that	the	root	node	key	(27)	has	all
less-valued	keys	on	the	left	sub-tree	and	the	higher	valued	keys	on	the	right	sub-tree.



Basic	Operations

Following	are	the	basic	operations	of	a	tree	
Search	−	Searches	an	element	in	a	tree.
Insert	−	Inserts	an	element	in	a	tree.
Pre-order	Traversal	−	Traverses	a	tree	in	a	pre-order	manner.
In-order	Traversal	−	Traverses	a	tree	in	an	in-order	manner.	Post-order	Traversal	−
Traverses	a	tree	in	a	post-order	manner.



Node

Define	a	node	having	some	data,	references	to	its	left	and	right	child	nodes.

struct	node	{
int	data;
struct	node	*leftChild;
struct	node	*rightChild;

};



SearchOperation

Whenever	an	element	is	to	be	searched,	start	searching	from	the	root	node.	Then	if	the
data	is	less	than	the	key	value,	search	for	the	element	in	the	left	subtree.	Otherwise,	search
for	the	element	in	the	right	subtree.	Follow	the	same	algorithm	for	each	node.

struct	node*	search(int	data){	struct	node	*current	=	root;	printf(“Visiting	elements:	“);

while(current->data	!=	data){

if(current	!=	NULL)	{
printf(“%d	“,current->data);	//go	to	left	tree
if(current->data	>	data){

current	=	current->leftChild;	}//else	go	to	right	tree
else	{

current	=	current->rightChild;	}
//not	found
if(current	==	NULL){	return	NULL;

}
}
}
return	current;

}



Insert	Operation

Whenever	an	element	is	to	be	inserted,	first	locate	its	proper	location.	Start	searching	from
the	root	node,	then	if	the	data	is	less	than	the	key	value,	search	for	the	empty	location	in
the	left	subtree	and	insert	the	data.	Otherwise,	search	for	the	empty	location	in	the	right
subtree	and	insert	the	data.

void	insert(int	data){
struct	node	*tempNode	=	(struct	node*)	malloc(sizeof(struct	node));	struct	node	*current;
struct	node	*parent;

tempNode->data	=	data;
tempNode->leftChild	=	NULL;	tempNode->rightChild	=	NULL;

//if	tree	is	empty	if(root	==	NULL){	root	=	tempNode;

}else	{
current	=	root;	parent	=	NULL;

while(1){
parent	=	current;	//go	to	left	of	the	tree
if(data	<	parent->data){

current	=	current->leftChild;	//insert	to	the	left

if(current	==	NULL){
parent->leftChild	=	tempNode;	return;

}
}//go	to	right	of	the	tree
else{

current	=	current->rightChild;	//insert	to	the	right
if(current	==	NULL){

parent->rightChild	=	tempNode;	return;
}
}
}
}
}



33.	AVL	Trees	Data	Structures	&
Algorithms
What	if	the	input	to	binary	search	tree	comes	in	a	sorted	(ascending	or	descending)
manner?	It	will	then	look	like	this	−

It	is	observed	that	BST’s	worst-case	performance	is	closest	to	linear	search	algorithms,
that	is	Ο(n).	In	real-time	data,	we	cannot	predict	data	pattern	and	their	frequencies.	So,	a
need	arises	to	balance	out	the	existing	BST.

Named	after	their	inventor	Adelson,	Velski	&	Landis,	AVL	trees	are	height	balancing
binary	search	tree.	AVL	tree	checks	the	height	of	the	left	and	the	right	sub-trees	and
assures	that	the	difference	is	not	more	than	1.	This	difference	is	called	the	Balance
Factor.

Here	we	see	that	the	first	tree	is	balanced	and	the	next	two	trees	are	not	balanced	−

In	the	second	tree,	the	left	subtree	of	C	has	height	2	and	the	right	subtree	has	height	0,	so
the	difference	is	2.	In	the	third	tree,	the	right	subtree	of	A	has	height	2	and	the	left	is
missing,	so	it	is	0,	and	the	difference	is	2	again.	AVL	tree	permits	difference	(balance
factor)	to	be	only	1.

BalanceFactor	=	height(leftsutree)	−	height(right-sutree)



If	the	difference	in	the	height	of	left	and	right	sub-trees	is	more	than	1,	the	tree	is	balanced
using	some	rotation	techniques.



AVL	Rotations

To	balance	itself,	an	AVL	tree	may	perform	the	following	four	kinds	of	rotations	−

Left	rotation
Right	rotation
Left-Right	rotation
Right-Left	rotation

The	first	two	rotations	are	single	rotations	and	the	next	two	rotations	are	double	rotations.
To	have	an	unbalanced	tree,	we	at	least	need	a	tree	of	height	2.	With	this	simple	tree,	let’s
understand	them	one	by	one.

Left	Rotation

If	a	tree	becomes	unbalanced,	when	a	node	is	inserted	into	the	right	subtree	of	the	right
subtree,	then	we	perform	a	single	left	rotation	−

In	our	example,	node	A	has
become	unbalanced	as	a	node	is	inserted	in	the	right	subtree	of	A’s	right	subtree.	We
perform	the	left	rotation	by	making	A	the	left-subtree	of	B.

Right	Rotation

AVL	tree	may	become	unbalanced,	if	a	node	is	inserted	in	the	left	subtree	of	the	left
subtree.	The	tree	then	needs	a	right	rotation.

As	depicted,	the	unbalanced
node	becomes	the	right	child	of	its	left	child	by	performing	a	right	rotation.

Left-Right	Rotation

Double	rotations	are	slightly	complex	version	of	already	explained	versions	of	rotations.
To	understand	them	better,	we	should	take	note	of	each	action	performed	while	rotation.



Let’s	first	check	how	to	perform	Left-Right	rotation.	A	left-right	rotation	is	a	combination
of	left	rotation	followed	by	right	rotation.

State	Action

A	node	has	been	inserted	into	the	right	subtree	of	the	left	subtree.	This	makes	C	an
unbalanced	node.	These	scenarios	cause	AVL	tree	to	perform	left-right	rotation.

We	first	perform	the	left	rotation	on	the	left	subtree	of	C.	This	makes	A,	the	left	subtree	of
B.

Right-Left	Rotation

Node	C	is	still	unbalanced,	however	now,	it	is	because	of	the	left-subtree	of	the	left-
subtree.

We	shall	now	right-rotate	the	tree,	making	B	the	new	root	node	of	this	subtree.	C	now
becomes	the	right	subtree	of	its	own	left	subtree.

The	tree	is	now	balanced.

The	second	type	of	double	rotation	is	Right-Left	Rotation.	It	is	a	combination	of	right
rotation	followed	by	left	rotation.
State	Action

A	node	has	been	inserted	into	the	left	subtree	of	the	right	subtree.	This	makes	A,	an
unbalanced	node	with	balance	factor	2.



First,	we	perform	the	right	rotation	along	C	node,	making	C	the	right	subtree	of	its	own
left	subtree	B.	Now,	B	becomes	the	right	subtree	of	A.

Node	A	is	still	unbalanced	because	of	the	right	subtree	of	its	right	subtree	and	requires	a
left	rotation.

A	left	rotation	is	performed	by	making	B	the	new	root	node	of	the	subtree.	A	becomes	the
left	subtree	of	its	right	subtree	B.

The	tree	is	now	balanced.



34.	Spanning	TreeData	Structures	&
Algorithms
A	spanning	tree	is	a	subset	of	Graph	G,	which	has	all	the	vertices	covered	with	minimum
possible	number	of	edges.	Hence,	a	spanning	tree	does	not	have	cycles	and	it	cannot	be
disconnected.

By	this	definition,	we	can	draw	a	conclusion	that	every	connected	and	undirected	Graph	G
has	at	least	one	spanning	tree.	A	disconnected	graph	does	not	have	any	spanning	tree,	as	it
cannot	be	spanned	to	all	its	vertices.

We	found	three	spanning	trees	off	one	complete	graph.	A	complete	undirected	graph	can
have	maximum	nn-2	number	of	spanning	trees,	where	n	is	the	number	of	nodes.	In	the
above	addressed	example,	n	is	3,	hence	33−2 3	spanning	trees	are	possible.



GeneralPropertiesofSpanning	Tree

We	now	understand	that	one	graph	can	have	more	than	one	spanning	tree.	Following	are	a
few	properties	of	the	spanning	tree	connected	to	graph	G	
A	connected	graph	G	can	have	more	than	one	spanning	tree.
All	possible	spanning	trees	of	graph	G,	have	the	same	number	of	edges	and	vertices.

The	spanning	tree	does	not	have	any	cycle	(loops).
Removing	one	edge	from	the	spanning	tree	will	make	the	graph	disconnected,	i.e.	the
spanning	tree	is	minimally	connected.

Adding	one	edge	to	the	spanning	tree	will	create	a	circuit	or	loop,	i.e.	the	spanning	tree	is
maximally	acyclic.



MathematicalPropertiesofSpanningTree

Spanning	tree	has	n-1	edges,	where	n	is	the	number	of	nodes	(vertices).
From	a	complete	graph,	by	removing	maximum	e-n+1	edges,	we	can	construct	a	spanning
tree.
A	complete	graph	can	have	maximum	nn-2	number	of	spanning	trees.
Thus,	we	can	conclude	that	spanning	trees	are	a	subset	of	connected	Graph	G	and
disconnected	graphs	do	not	have	spanning	tree.



ApplicationofSpanningTree

Spanning	tree	is	basically	used	to	find	a	minimum	path	to	connect	all	nodes	in	a	graph.
Common	application	of	spanning	trees	are	−
Civil	Network	Planning
Computer	Network	Routing	Protocol
Cluster	Analysis

Let	us	understand	this	through	a	small	example.	Consider,	city	network	as	a	huge	graph
and	now	plans	to	deploy	telephone	lines	in	such	a	way	that	in	minimum	lines	we	can
connect	to	all	city	nodes.	This	is	where	the	spanning	tree	comes	into	picture.



MinimumSpanningTree(MST)

In	a	weighted	graph,	a	minimum	spanning	tree	is	a	spanning	tree	that	has	minimum	weight
than	all	other	spanning	trees	of	the	same	graph.	In	real-world	situations,	this	weight	can	be
measured	as	distance,	congestion,	traffic	load	or	any	arbitrary	value	denoted	to	the	edges.



MinimumSpanning-TreeAlgorithm

We	shall	learn	about	two	most	important	spanning	tree	algorithms	here	−	Kruskal’s
Algorithm
Prim’s	Algorithm	Both	are	greedy	algorithms.



Kruskal’s	Spanning	Tree	Algorithm

Kruskal’s	algorithm	to	find	the	minimum	cost	spanning	tree	uses	the	greedy	approach.
This	algorithm	treats	the	graph	as	a	forest	and	every	node	it	has	as	an	individual	tree.	A
tree	connects	to	another	only	and	only	if,	it	has	the	least	cost	among	all	available	options
and	does	not	violate	MST	properties.

To	understand	Kruskal’s	algorithm	let	us	consider	the	following	example	−	

Step	1	-	Remove	all	loops	and	parallel	edges

Remove	all	loops	and	parallel	edges	from	the	given	graph.

In	case	of	parallel	edges,	keep	the	one	which	has	the	least	cost	associated	and	remove	all
others.

Step	2	-	Arrange	all	edges	in	their	increasing	order	of	weight



The	next	step	is	to	create	a	set	of	edges	and	weight,	and	arrange	them	in	an	ascending
order	of	weightage	(cost).

Step	3	-	Add	the	edge	which	has	the	least	weightage

Now	we	start	adding	edges	to	the	graph	beginning	from	the	one	which	has	the	least
weight.	Throughout,	we	shall	keep	checking	that	the	spanning	properties	remain	intact.	In
case,	by	adding	one	edge,	the	spanning	tree	property	does	not	hold	then	we	shall	consider
not	to	include	the	edge	in	the	graph.

The	least	cost	is	2	and	edges	involved	are	B,D	and	D,T.	We	add	them.	Adding	them	does
not	violate	spanning	tree	properties,	so	we	continue	to	our	next	edge	selection.

Next	cost	is	3,	and	associated	edges	are	A,C	and	C,D.	We	add	them	again	−

Next	cost	in	the	table	is	4,	and	we	observe	that
adding	it	will	create	a	circuit	in	the	graph.

We	ignore	it.	In	the	process	we	shall	ignore/avoid	all	edges	that	create	a	circuit.



We	observe	that	edges	with	cost	5	and	6	also	create	circuits.	We	ignore	them	and	move	on.

Now	we	are	left	with	only	one	node	to	be
added.	Between	the	two	least	cost	edges	available	7	and	8,	we	shall	add	the	edge	with	cost
7.

By	adding	edge	S,A	we	have	included	all	the
nodes	of	the	graph	and	we	now	have	minimum	cost	spanning	tree.



Prim’sSpanningTreeAlgorithm

Prim’s	algorithm	to	find	minimum	cost	spanning	tree	(as	Kruskal’s	algorithm)	uses	the
greedy	approach.	Prim’s	algorithm	shares	a	similarity	with	the	shortest	path	first
algorithms.

Prim’s	algorithm,	in	contrast	with	Kruskal’s	algorithm,	treats	the	nodes	as	a	single	tree	and
keeps	on	adding	new	nodes	to	the	spanning	tree	from	the	given	graph.	To	contrast	with
Kruskal’s	algorithm	and	to	understand	Prim’s	algorithm	better,	we	shall	use	the	same
example	−

Step	1	-	Remove	all	loops	and	parallel	edges

Remove	all	loops	and	parallel	edges	from	the
given	graph.	In	case	of	parallel	edges,	keep	the	one	which	has	the	least	cost	associated	and
remove	all	others.

Step	2	-	Choose	any	arbitrary	node	as	root	node



In	this	case,	we	choose	S	node	as	the	root	node	of	Prim’s	spanning	tree.	This	node	is
arbitrarily	chosen,	so	any	node	can	be	the	root	node.	One	may	wonder	why	any	video	can
be	a	root	node.	So	the	answer	is,	in	the	spanning	tree	all	the	nodes	of	a	graph	are	included
and	because	it	is	connected	then	there	must	be	at	least	one	edge,	which	will	join	it	to	the
rest	of	the	tree.

Step	3	-	Check	outgoing	edges	and	select	the	one	with	less	cost

After	choosing	the	root	node	S,	we	see	that	S,A	and	S,C	are	two	edges	with	weight	7	and
8,	respectively.	We	choose	the	edge	S,A	as	it	is	lesser	than	the	other.

Now,	the	tree	S-7-A	is	treated	as	one	node	and	we	check	for	all	edges	going	out	from	it.
We	select	the	one	which	has	the	lowest	cost	and	include	it	in	the	tree.

After	this	step,	S-7-A-3-C	tree	is	formed.	Now	we’ll	again	treat	it	as	a	node	and	will	check
all	the	edges	again.	However,	we	will	choose	only	the	least	cost	edge.	In	this	case,	C-3-D
is	the	new	edge,	which	is	less	than	other	edges’	cost	8,	6,	4,	etc.

After	adding	node	D	to	the	spanning	tree,	we	now	have	two	edges	going	out	of	it	having
the	same	cost,	i.e.	D-2-T	and	D-2-B.	Thus,	we	can	add	either	one.	But	the	next	step	will
again	yield	edge	2	as	the	least	cost.	Hence,	we	are	showing	a	spanning	tree	with	both
edges	included.



We	may	find	that	the	output	spanning	tree	of
the	same	graph	using	two	different	algorithms	is	same.



35.	Heaps	Data	Structures	&	Algorithms
Heap	is	a	special	case	of	balanced	binary	tree	data	structure	where	the	root-node	key	is
compared	with	its	children	and	arranged	accordingly.	If	α	has	child	node	β	then	−	key(α)
≥	key(β)
As	the	value	of	parent	is	greater	than	that	of	child,	this	property	generates	Max	Heap.
Based	on	this	criteria,	a	heap	can	be	of	two	types	−
For	Input	→	35	33	42	10	14	19	27	44	26	31
Min-Heap	−	Where	the	value	of	the	root	node	is	less	than	or	equal	to	either	of	its	children.

Max-Heap	−	Where	the
value	of	the	root	node	is	greater	than	or	equal	to	either	of	its	children.

Both	trees	are	constructed
using	the	same	input	and	order	of	arrival.



MaxHeapConstructionAlgorithm

We	shall	use	the	same	example	to	demonstrate	how	a	Max	Heap	is	created.	The	procedure
to	create	Min	Heap	is	similar	but	we	go	for	min	values	instead	of	max	values.

We	are	going	to	derive	an	algorithm	for	max	heap	by	inserting	one	element	at	a	time.	At
any	point	of	time,	heap	must	maintain	its	property.	While	insertion,	we	also	assume	that
we	are	inserting	a	node	in	an	already	heapified	tree.

Step	1	−	Create	a	new	node	at	the	end	of	heap.
Step	2	−	Assign	new	value	to	the	node.
Step	3	−	Compare	the	value	of	this	child	node	with	its	parent.
Step	4	−	If	value	of	parent	is	less	than	child,	then	swap	them.
Step	5	−	Repeat	step	3	&	4	until	Heap	property	holds.

Note	−	In	Min	Heap	construction	algorithm,	we	expect	the	value	of	the	parent	node	to	be
less	than	that	of	the	child	node.
Let’s	understand	Max	Heap	construction	by	an	animated	illustration.	We	consider	the
same	input	sample	that	we	used	earlier.



MaxHeapDeletionAlgorithm

Let	us	derive	an	algorithm	to	delete	from	max	heap.	Deletion	in	Max	(or	Min)	Heap
always	happens	at	the	root	to	remove	the	Maximum	(or	minimum)	value.

Step	1	−	Remove	root	node.
Step	2	−	Move	the	last	element	of	last	level	to	root.	Step	3	−	Compare	the	value	of	this
child	node	with	its	parent.	Step	4	−	If	value	of	parent	is	less	than	child,	then	swap	them.
Step	5	−	Repeat	step	3	&	4	until	Heap	property	holds.



Recursion
36.	Recursion─	BasicsData	Structures	&
Algorithms
Some	computer	programming	languages	allow	a	module	or	function	to	call	itself.	This
technique	is	known	as	recursion.	In	recursion,	a	function	α	either	calls	itself	directly	or
calls	a	function	β	that	in	turn	calls	the	original	function	α.	The	function	α	is	called
recursive	function.

Example	−	a	function	calling	itself.

int	function(int	value)	{	if(value	<	1)
return;

function(value	-	1);
printf(“%d	“,value);	}
Example	−	a	function	that	calls	another	function	which	in	turn	calls	it	again.

int	function(int	value)	{	if(value	<	1)
return;

function(value	-	1);
printf(“%d	“,value);	}



Properties

A	recursive	function	can	go	infinite	like	a	loop.	To	avoid	infinite	running	of	recursive
function,	there	are	two	properties	that	a	recursive	function	must	have	−	Base	criteria	−
There	must	be	at	least	one	base	criteria	or	condition,	such	that,	when	this	condition	is	met
the	function	stops	calling	itself	recursively.
Progressive	approach	−	The	recursive	calls	should	progress	in	such	a	way	that	each	time
a	recursive	call	is	made	it	comes	closer	to	the	base	criteria.



Implementation

Many	programming	languages	implement	recursion	by	means	of	stacks.	Generally,
whenever	a	function	(caller)	calls	another	function	(callee)	or	itself	as	callee,	the	caller
function	transfers	execution	control	to	the	callee.	This	transfer	process	may	also	involve
some	data	to	be	passed	from	the	caller	to	the	callee.

This	implies,	the	caller	function	has	to	suspend	its	execution	temporarily	and	resume	later
when	the	execution	control	returns	from	the	callee	function.	Here,	the	caller	function
needs	to	start	exactly	from	the	point	of	execution	where	it	puts	itself	on	hold.	It	also	needs
the	exact	same	data	values	it	was	working	on.	For	this	purpose,	an	activation	record	(or
stack	frame)	is	created	for	the	caller	function.

This	activation	record	keeps	the
information	about	local	variables,	formal	parameters,	return	address	and	all	information
passed	to	the	caller	function.



AnalysisofRecursion

One	may	argue	why	to	use	recursion,	as	the	same	task	can	be	done	with	iteration.	The	first
reason	is,	recursion	makes	a	program	more	readable	and	because	of	latest	enhanced	CPU
systems,	recursion	is	more	efficient	than	iterations.



TimeComplexity

In	case	of	iterations,	we	take	number	of	iterations	to	count	the	time	complexity.	Likewise,
in	case	of	recursion,	assuming	everything	is	constant,	we	try	to	figure	out	the	number	of
times	a	recursive	call	is	being	made.	A	call	made	to	a	function	is	Ο(1),	hence	the	(n)
number	of	times	a	recursive	call	is	made	makes	the	recursive	function	Ο(n).



SpaceComplexity

Space	complexity	is	counted	as	what	amount	of	extra	space	is	required	for	a	module	to
execute.	In	case	of	iterations,	the	compiler	hardly	requires	any	extra	space.	The	compiler
keeps	updating	the	values	of	variables	used	in	the	iterations.	But	in	case	of	recursion,	the
system	needs	to	store	activation	record	each	time	a	recursive	call	is	made.	Hence,	it	is
considered	that	space	complexity	of	recursive	function	may	go	higher	than	that	of	a
function	with	iteration.



37.	Tower	of	HanoiData	Structures	&
Algorithms
Tower	of	Hanoi,	is	a	mathematical	puzzle	which	consists	of	three	towers	(pegs)	and	more
than	one	rings	is	as	depicted	−

These	rings	are	of	different	sizes	and	stacked	upon	in	an	ascending	order,	i.e.	the	smaller
one	sits	over	the	larger	one.	There	are	other	variations	of	the	puzzle	where	the	number	of
disks	increase,	but	the	tower	count	remains	the	same.



Rules

The	mission	is	to	move	all	the	disks	to	some	another	tower	without	violating	the	sequence
of	arrangement.	A	few	rules	to	be	followed	for	Tower	of	Hanoi	are	−
Only	one	disk	can	be	moved	among	the	towers	at	any	given	time.
Only	the	“top”	disk	can	be	removed.

No	large	disk	can	sit	over	a	small	disk.
Following	is	an	animated	representation	of	solving	a	Tower	of	Hanoi	puzzle	with	three
disks.





Tower	of	Hanoi	puzzle	with	n	disks	can	be	solved	in	minimum	2n−1	steps.	This
presentation	shows	that	a	puzzle	with	3	disks	has	taken	23−1	=	7	steps.



Algorithm

To	write	an	algorithm	for	Tower	of	Hanoi,	first	we	need	to	learn	how	to	solve	this	problem
with	lesser	amount	of	disks,	say	→	1	or	2.	We	mark	three	towers	with	name,	source,
destination	and	aux	(only	to	help	moving	the	disks).	If	we	have	only	one	disk,	then	it	can
easily	be	moved	from	source	to	destination	peg.

If	we	have	2	disks	–
First,	we	move	the	smaller	(top)	disk	to	aux	peg.
Then,	we	move	the	larger	(bottom)	disk	to	destination	peg.

And	finally,	we	move	the	smaller	disk	from	aux	to	destination	peg.



So	now,	we	are	in	a	position	to	design	an	algorithm	for	Tower	of	Hanoi	with	more	than
two	disks.	We	divide	the	stack	of	disks	in	two	parts.	The	largest	disk	(nth	disk)	is	in	one
part	and	all	other	(n-1)	disks	are	in	the	second	part.

Our	ultimate	aim	is	to	move	disk	n	from	source	to	destination	and	then	put	all	other	(n1)
disks	onto	it.	We	can	imagine	to	apply	the	same	in	a	recursive	way	for	all	given	set	of
disks.

The	steps	to	follow	are	−

Step	1	−	Move	n-1	disks	from	 	to	 	Step	2	−	Move	nth	disk	from 	to
	Step	3	−	Move	n-1	disks	from	 	to	

A	recursive	algorithm	for	Tower	of	Hanoi	can	be	driven	as	follows	−
START
Procedure	Hanoi(disk,	source,	dest,	aux)

IF	disk	==	0,	THEN
move	disk	from	source	to	dest	
ELSE
Hanoi(disk	-	1,	source,	aux,	dest)	//	Step	1	move	disk	from	source	to	dest	//	Step	2
Hanoi(disk	-	1,	aux,	dest,	source)	//	Step	3
END	IF

END	Procedure	STOP
To	check	the	implementation	in	C	programming,	click	here.



Tower	of	Hanoi	in	C

Program

#include	<stdio.h>	#include	<stdbool.h>
#define	MAX	10
int	list[MAX]	=	{1,8,4,6,0,3,5,2,7,9};

void	display(){	int	i;
printf(“[“);

//	navigate	through	all	items	for(i	=	0;	i	<	MAX;	i++){	printf(“%d	“,list[i]);	}
printf(“]\n”);	}

void	bubbleSort()	{
int	temp;
int	i,j;
bool	swapped	=	false;

//	loop	through	all	numbers	for(i	=	0;	i	<	MAX-1;	i++)	{	swapped	=	false;
//	loop	through	numbers	falling	ahead	
for(j	=	0;	j	<	MAX-1-i;	j++)	{
printf(“Items	compared:	[	%d,	%d	]	“,	list[j],list[j+1]);

//	check	if	next	number	is	lesser	than	current	no	//	swap	the	numbers.	
//	(Bubble	up	the	highest	number)

if(list[j]	>	list[j+1])	{	temp	=	list[j];
list[j]	=	list[j+1];	list[j+1]	=	temp;

swapped	=	true;
printf(”	=>	swapped	[%d,	%d]\n”,list[j],list[j+1]);

}else	{
printf(”	=>	not	swapped\n”);
}
}

//	if	no	number	was	swapped	that	means	//	array	is	sorted	now,	break	the	loop.
if(!swapped)	{

break;
}
printf(“Iteration	%d#:	“,(i+1));	display();
}
}

main(){
printf(“Input	Array:	“);	display();
printf(“\n”);
bubbleSort();
printf(“\nOutput	Array:	“);	display();



}
If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−
Input	Array:	[1	8	4	6	0	3	5	2	7	9	]

Items	compared:	[	1,	8	]	=>	not	swapped	Items	compared:	[	8,	4	]	=>	swapped	[4,	8]	Items
compared:	[	8,	6	]	=>	swapped	[6,	8]	Items	compared:	[	8,	0	]	=>	swapped	[0,	8]	Items
compared:	[	8,	3	]	=>	swapped	[3,	8]	Items	compared:	[	8,	5	]	=>	swapped	[5,	8]	Items
compared:	[	8,	2	]	=>	swapped	[2,	8]	Items	compared:	[	8,	7	]	=>	swapped	[7,	8]	Items
compared:	[	8,	9	]	=>	not	swapped

Iteration	1#:	[1	4	6	0	3	5	2	7	8	9	]
Items	compared:	[	1,	4	]	=>	not	swapped	Items	compared:	[	4,	6	]	=>	not	swapped	Items
compared:	[	6,	0	]	=>	swapped	[0,	6]	Items	compared:	[	6,	3	]	=>	swapped	[3,	6]	Items
compared:	[	6,	5	]	=>	swapped	[5,	6]	Items	compared:	[	6,	2	]	=>	swapped	[2,	6]	Items
compared:	[	6,	7	]	=>	not	swapped	Items	compared:	[	7,	8	]	=>	not	swapped

Iteration	2#:	[1	4	0	3	5	2	6	7	8	9	]
Items	compared:	[	1,	4	]	=>	not	swapped	Items	compared:	[	4,	0	]	=>	swapped	[0,	4]	Items
compared:	[	4,	3	]	=>	swapped	[3,	4]	Items	compared:	[	4,	5	]	=>	not	swapped	Items
compared:	[	5,	2	]	=>	swapped	[2,	5]	Items	compared:	[	5,	6	]	=>	not	swapped	Items
compared:	[	6,	7	]	=>	not	swapped

Iteration	3#:	[1	0	3	4	2	5	6	7	8	9	]
Items	compared:	[	1,	0	]	=>	swapped	[0,	1]	Items	compared:	[	1,	3	]	=>	not	swapped	Items
compared:	[	3,	4	]	=>	not	swapped	Items	compared:	[	4,	2	]	=>	swapped	[2,	4]	Items
compared:	[	4,	5	]	=>	not	swapped	Items	compared:	[	5,	6	]	=>	not	swapped

Iteration	4#:	[0	1	3	2	4	5	6	7	8	9	]
Items	compared:	[	0,	1	]	=>	not	swapped	Items	compared:	[	1,	3	]	=>	not	swapped	Items
compared:	[	3,	2	]	=>	swapped	[2,	3]	Items	compared:	[	3,	4	]	=>	not	swapped	Items
compared:	[	4,	5	]	=>	not	swapped

Iteration	5#:	[0	1	2	3	4	5	6	7	8	9	]
Items	compared:	[	0,	1	]	=>	not	swapped	Items	compared:	[	1,	2	]	=>	not	swapped	Items
compared:	[	2,	3	]	=>	not	swapped	Items	compared:	[	3,	4	]	=>	not	swapped

Output	Array:	[0	1	2	3	4	5	6	7	8	9	]



38.	Fibonacci	SeriesData	Structures	&
Algorithms
Fibonacci	series	generates	the	subsequent	number	by	adding	two	previous	numbers.
Fibonacci	series	starts	from	two	numbers	−	F0	&	F1.	The	initial	values	of	F0	&	F1	can	be
taken	as	0,	1	or	1,	1	respectively.

Fibonacci	series	satisfies	the	following	conditions	−
Fn	=	Fn-1	+	Fn-2
Hence,	a	Fibonacci	series	can	look	like	this	−
F8	=	0	1	1	2	3	5	8	13
or,	this	−

F8	=	1	1	2	3	5	8	13	21	For	illustration	purpose,	Fibonacci	of	F8	is	displayed	as	−	



FibonacciIterativeAlgorithm

First	we	try	to	draft	the	iterative	algorithm	for	Fibonacci	series.
Procedure	Fibonacci(n)
declare	f0,	f1,	fib,	loop	
set	f0	to	0	set	f1	to	1
display	f0,	f1
for	loop	←	1	to	n

fib	←	f0	+	f1	f0	←	f1
f1	←	fib

display	fib	end	for
end	procedure
To	know	about	the	implementation	of	the	above	algorithm	in	C	programming	language,
click	here.



FibonacciInteractiveProgram	inC

Fibonacci	Program	in	C	RecursionDemo.c

#include	<stdio.h>

int	factorial(int	n){	//base	case
if(n	==	0){

return	1;
return	n	*	factorial(n-1);	}
}
int	fibbonacci(int	n){
if(n	==	0){
return	0;

}else	if(n	==	1){
return	1;
}else	{
return	(fibbonacci(n-1)	+	fibbonacci(n-2));
}
}

main(){
int	n	=	5;	int	i;

printf(“Factorial	of	%d:	%d\n”	,	n	,	factorial(n));	printf(“Fibbonacci	of	%d:	”	,	n);

for(i	=	0;i<n;i++){
printf(“%d	“,fibbonacci(i));
}

}
If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−
Factorial	of	5:	120
Fibbonacci	of	5:	0	1	1	2	3



FibonacciRecursiveAlgorithm

Let	us	learn	how	to	create	a	recursive	algorithm	Fibonacci	series.	The	base	criteria	of
recursion.
START
Procedure	Fibonacci(n)
declare	f0,	f1,	fib,	loop	
set	f0	to	0	set	f1	to	1
display	f0,	f1
for	loop	←	1	to	n

fib	←	f0	+	f1	f0	←	f1
f1	←	fib

display	fib	end	for
END
To	know	about	the	implementation	of	the	above	algorithm	in	C	programming	language,
click	here.



FibonacciRecursiveProgram	inC

Fibonacci	Program	in	C

#include	<stdio.h>

int	factorial(int	n){	//base	case
if(n	==	0){

return	1;
return	n	*	factorial(n-1);	}
}
int	fibbonacci(int	n){
if(n	==	0){
return	0;

}else	if(n	==	1){
return	1;
}else	{
return	(fibbonacci(n-1)	+	fibbonacci(n-2));
}
}

main(){
int	n	=	5;	int	i;

printf(“Factorial	of	%d:	%d\n”	,	n	,	factorial(n));	printf(“Fibbonacci	of	%d:	”	,	n);

for(i	=	0;i<n;i++){
printf(“%d	“,fibbonacci(i));
}

}
If	we	compile	and	run	the	above	program,	it	will	produce	the	following	result	−
Factorial	of	5:	120
Fibbonacci	of	5:	0	1	1	2	3


